Added general methods to guess errors on estimated parameters
JIRA: MATH-176 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@613474 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
a1dcceb840
commit
376834acf1
|
@ -87,9 +87,17 @@ public class MessagesResources_fr
|
|||
{ "Conversion Exception in Transformation: {0}",
|
||||
"Exception de conversion dans une transformation : {0}" },
|
||||
|
||||
// org.apache.commons.math.estimation.AbstractEstimator
|
||||
{ "maximal number of evaluations exceeded ({0})",
|
||||
"nombre maximal d''\u00e9valuations d\u00e9pass\u00e9 ({0})" },
|
||||
{ "unable to compute covariances: singular problem",
|
||||
"impossible de calculer les covariances : probl\u00e8me singulier"},
|
||||
{ "no degrees of freedom ({0} measurements, {1} parameters)",
|
||||
"aucun degr\u00e9 de libert\u00e9 ({0} mesures, {1} param\u00e8tres)" },
|
||||
|
||||
// org.apache.commons.math.estimation.GaussNewtonEstimator
|
||||
{ "unable to converge in {0} iterations",
|
||||
"pas de convergence apr\u00e8s {0} it\u00e9rations" },
|
||||
{ "unable to solve: singular problem",
|
||||
"r\u00e9solution impossible : probl\u00e8me singulier" },
|
||||
|
||||
// org.apache.commons.math.estimation.LevenbergMarquardtEstimator
|
||||
{ "cost relative tolerance is too small ({0}), no further reduction in the sum of squares is possible",
|
||||
|
@ -98,8 +106,6 @@ public class MessagesResources_fr
|
|||
"trop petite tol\u00e9rance relative sur les param\u00e8tres ({0}), aucune am\u00e9lioration de la solution approximative n''est possible" },
|
||||
{ "orthogonality tolerance is too small ({0}), solution is orthogonal to the jacobian",
|
||||
"trop petite tol\u00e9rance sur l''orthogonalit\u00e9 ({0}), la solution est orthogonale \u00e0 la jacobienne" },
|
||||
{ "maximal number of evaluations exceeded ({0})",
|
||||
"nombre maximal d''\u00e9valuations d\u00e9pass\u00e9 ({0})" },
|
||||
|
||||
// org.apache.commons.math.geometry.CardanEulerSingularityException
|
||||
{ "Cardan angles singularity",
|
||||
|
|
|
@ -0,0 +1,274 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.estimation;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math.linear.InvalidMatrixException;
|
||||
import org.apache.commons.math.linear.RealMatrixImpl;
|
||||
|
||||
public abstract class AbstractEstimator implements Estimator {
|
||||
|
||||
/**
|
||||
* Build an abstract estimator for least squares problems.
|
||||
*/
|
||||
protected AbstractEstimator() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the maximal number of cost evaluations allowed.
|
||||
*
|
||||
* @param maxCostEval maximal number of cost evaluations allowed
|
||||
* @see #estimate
|
||||
*/
|
||||
public void setMaxCostEval(int maxCostEval) {
|
||||
this.maxCostEval = maxCostEval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the number of cost evaluations.
|
||||
*
|
||||
* @return number of cost evaluations
|
||||
* */
|
||||
public int getCostEvaluations() {
|
||||
return costEvaluations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the number of jacobian evaluations.
|
||||
*
|
||||
* @return number of jacobian evaluations
|
||||
* */
|
||||
public int getJacobianEvaluations() {
|
||||
return jacobianEvaluations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the jacobian matrix.
|
||||
*/
|
||||
protected void updateJacobian() {
|
||||
++jacobianEvaluations;
|
||||
Arrays.fill(jacobian, 0);
|
||||
for (int i = 0, index = 0; i < rows; i++) {
|
||||
WeightedMeasurement wm = measurements[i];
|
||||
double factor = -Math.sqrt(wm.getWeight());
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
jacobian[index++] = factor * wm.getPartial(parameters[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the residuals array and cost function value.
|
||||
* @exception EstimationException if the number of cost evaluations
|
||||
* exceeds the maximum allowed
|
||||
*/
|
||||
protected void updateResidualsAndCost()
|
||||
throws EstimationException {
|
||||
|
||||
if (++costEvaluations > maxCostEval) {
|
||||
throw new EstimationException("maximal number of evaluations exceeded ({0})",
|
||||
new String[] {
|
||||
Integer.toString(maxCostEval)
|
||||
});
|
||||
}
|
||||
|
||||
cost = 0;
|
||||
for (int i = 0, index = 0; i < rows; i++, index += cols) {
|
||||
WeightedMeasurement wm = measurements[i];
|
||||
double residual = wm.getResidual();
|
||||
residuals[i] = Math.sqrt(wm.getWeight()) * residual;
|
||||
cost += wm.getWeight() * residual * residual;
|
||||
}
|
||||
cost = Math.sqrt(cost);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the Root Mean Square value.
|
||||
* Get the Root Mean Square value, i.e. the root of the arithmetic
|
||||
* mean of the square of all weighted residuals. This is related to the
|
||||
* criterion that is minimized by the estimator as follows: if
|
||||
* <em>c</em> if the criterion, and <em>n</em> is the number of
|
||||
* measurements, then the RMS is <em>sqrt (c/n)</em>.
|
||||
*
|
||||
* @param problem estimation problem
|
||||
* @return RMS value
|
||||
*/
|
||||
public double getRMS(EstimationProblem problem) {
|
||||
WeightedMeasurement[] wm = problem.getMeasurements();
|
||||
double criterion = 0;
|
||||
for (int i = 0; i < wm.length; ++i) {
|
||||
double residual = wm[i].getResidual();
|
||||
criterion += wm[i].getWeight() * residual * residual;
|
||||
}
|
||||
return Math.sqrt(criterion / wm.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the Chi-Square value.
|
||||
* @param problem estimation problem
|
||||
* @return chi-square value
|
||||
*/
|
||||
public double getChiSquare(EstimationProblem problem) {
|
||||
WeightedMeasurement[] wm = problem.getMeasurements();
|
||||
double chiSquare = 0;
|
||||
for (int i = 0; i < wm.length; ++i) {
|
||||
double residual = wm[i].getResidual();
|
||||
chiSquare += residual * residual / wm[i].getWeight();
|
||||
}
|
||||
return chiSquare;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the covariance matrix of estimated parameters.
|
||||
* @param problem estimation problem
|
||||
* @return covariance matrix
|
||||
* @exception EstimationException if the covariance matrix
|
||||
* cannot be computed (singular problem)
|
||||
*/
|
||||
public double[][] getCovariances(EstimationProblem problem)
|
||||
throws EstimationException {
|
||||
|
||||
// set up the jacobian
|
||||
updateJacobian();
|
||||
|
||||
// compute transpose(J).J, avoiding building big intermediate matrices
|
||||
final int rows = problem.getMeasurements().length;
|
||||
final int cols = problem.getAllParameters().length;
|
||||
final int max = cols * rows;
|
||||
double[][] jTj = new double[cols][cols];
|
||||
for (int i = 0; i < cols; ++i) {
|
||||
for (int j = i; j < cols; ++j) {
|
||||
double sum = 0;
|
||||
for (int k = 0; k < max; k += cols) {
|
||||
sum += jacobian[k + i] * jacobian[k + j];
|
||||
}
|
||||
jTj[i][j] = sum;
|
||||
jTj[j][i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
// compute the covariances matrix
|
||||
return new RealMatrixImpl(jTj).inverse().getData();
|
||||
} catch (InvalidMatrixException ime) {
|
||||
throw new EstimationException("unable to compute covariances: singular problem",
|
||||
new Object[0]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Guess the errors in estimated parameters.
|
||||
* <p>Guessing is covariance-based, it only gives rough order of magnitude.</p>
|
||||
* @param problem estimation problem
|
||||
* @return errors in estimated parameters
|
||||
* @exception EstimationException if the covariances matrix cannot be computed
|
||||
* or the number of degrees of freedom is not positive (number of measurements
|
||||
* lesser or equal to number of parameters)
|
||||
*/
|
||||
public double[] guessParametersErrors(EstimationProblem problem)
|
||||
throws EstimationException {
|
||||
int m = problem.getMeasurements().length;
|
||||
int p = problem.getAllParameters().length;
|
||||
if (m <= p) {
|
||||
throw new EstimationException("no degrees of freedom ({0} measurements, {1} parameters)",
|
||||
new Object[] { new Integer(m), new Integer(p)});
|
||||
}
|
||||
double[] errors = new double[problem.getAllParameters().length];
|
||||
final double c = Math.sqrt(getChiSquare(problem) / (m - p));
|
||||
double[][] covar = getCovariances(problem);
|
||||
for (int i = 0; i < errors.length; ++i) {
|
||||
errors[i] = Math.sqrt(covar[i][i]) * c;
|
||||
}
|
||||
return errors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialization of the common parts of the estimation.
|
||||
* <p>This method <em>must</em> be called at the start
|
||||
* of the {@link #estimate(EstimationProblem) estimate}
|
||||
* method.</p>
|
||||
* @param problem estimation problem to solve
|
||||
*/
|
||||
protected void initializeEstimate(EstimationProblem problem) {
|
||||
|
||||
// reset counters
|
||||
costEvaluations = 0;
|
||||
jacobianEvaluations = 0;
|
||||
|
||||
// retrieve the equations and the parameters
|
||||
measurements = problem.getMeasurements();
|
||||
parameters = problem.getUnboundParameters();
|
||||
|
||||
// arrays shared with the other private methods
|
||||
rows = measurements.length;
|
||||
cols = parameters.length;
|
||||
jacobian = new double[rows * cols];
|
||||
residuals = new double[rows];
|
||||
|
||||
cost = Double.POSITIVE_INFINITY;
|
||||
|
||||
}
|
||||
|
||||
public abstract void estimate(EstimationProblem problem)
|
||||
throws EstimationException;
|
||||
|
||||
/** Array of measurements. */
|
||||
protected WeightedMeasurement[] measurements;
|
||||
|
||||
/** Array of parameters. */
|
||||
protected EstimatedParameter[] parameters;
|
||||
|
||||
/**
|
||||
* Jacobian matrix.
|
||||
* <p>This matrix is in canonical form just after the calls to
|
||||
* {@link #updateJacobian()}, but may be modified by the solver
|
||||
* in the derived class (the {@link LevenbergMarquardtEstimator
|
||||
* Levenberg-Marquardt estimator} does this).</p>
|
||||
*/
|
||||
protected double[] jacobian;
|
||||
|
||||
/** Number of columns of the jacobian matrix. */
|
||||
protected int cols;
|
||||
|
||||
/** Number of rows of the jacobian matrix. */
|
||||
protected int rows;
|
||||
|
||||
/** Residuals array.
|
||||
* <p>This array is in canonical form just after the calls to
|
||||
* {@link #updateJacobian()}, but may be modified by the solver
|
||||
* in the derived class (the {@link LevenbergMarquardtEstimator
|
||||
* Levenberg-Marquardt estimator} does this).</p>
|
||||
*/
|
||||
protected double[] residuals;
|
||||
|
||||
/** Cost value (square root of the sum of the residuals). */
|
||||
protected double cost;
|
||||
|
||||
/** Maximal allowed number of cost evaluations. */
|
||||
protected int maxCostEval;
|
||||
|
||||
/** Number of cost evaluations. */
|
||||
protected int costEvaluations;
|
||||
|
||||
/** Number of jacobian evaluations. */
|
||||
protected int jacobianEvaluations;
|
||||
|
||||
}
|
|
@ -30,7 +30,7 @@ public class EstimationException
|
|||
extends MathException {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = -7414806622114810487L;
|
||||
private static final long serialVersionUID = -573038581493881337L;
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
|
@ -38,17 +38,8 @@ extends MathException {
|
|||
* @param specifier format specifier (to be translated)
|
||||
* @param parts to insert in the format (no translation)
|
||||
*/
|
||||
public EstimationException(String specifier, String[] parts) {
|
||||
public EstimationException(String specifier, Object[] parts) {
|
||||
super(specifier, parts);
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
* Build an exception from a cause
|
||||
* @param cause cause of this exception
|
||||
*/
|
||||
public EstimationException(Throwable cause) {
|
||||
super(cause);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -60,10 +60,31 @@ public interface Estimator {
|
|||
* criterion that is minimized by the estimator as follows: if
|
||||
* <em>c</em> is the criterion, and <em>n</em> is the number of
|
||||
* measurements, then the RMS is <em>sqrt (c/n)</em>.
|
||||
* @see #guessParametersErrors(EstimationProblem)
|
||||
*
|
||||
* @param problem estimation problem
|
||||
* @return RMS value
|
||||
*/
|
||||
public double getRMS(EstimationProblem problem);
|
||||
|
||||
/**
|
||||
* Get the covariance matrix of estimated parameters.
|
||||
* @param problem estimation problem
|
||||
* @return covariance matrix
|
||||
* @exception EstimationException if the covariance matrix
|
||||
* cannot be computed (singular problem)
|
||||
*/
|
||||
public double[][] getCovariances(EstimationProblem problem)
|
||||
throws EstimationException;
|
||||
|
||||
/**
|
||||
* Guess the errors in estimated parameters.
|
||||
* @see #getRMS(EstimationProblem)
|
||||
* @param problem estimation problem
|
||||
* @return errors in estimated parameters
|
||||
* @exception EstimationException if the error cannot be guessed
|
||||
*/
|
||||
public double[] guessParametersErrors(EstimationProblem problem)
|
||||
throws EstimationException;
|
||||
|
||||
}
|
||||
|
|
|
@ -34,206 +34,145 @@ import org.apache.commons.math.linear.RealMatrixImpl;
|
|||
*
|
||||
*/
|
||||
|
||||
public class GaussNewtonEstimator
|
||||
implements Estimator, Serializable {
|
||||
public class GaussNewtonEstimator extends AbstractEstimator implements Serializable {
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
*
|
||||
* <p>This constructor builds an estimator and stores its convergence
|
||||
* characteristics.</p>
|
||||
*
|
||||
* <p>An estimator is considered to have converged whenever either
|
||||
* the criterion goes below a physical threshold under which
|
||||
* improvements are considered useless or when the algorithm is
|
||||
* unable to improve it (even if it is still high). The first
|
||||
* condition that is met stops the iterations.</p>
|
||||
*
|
||||
* <p>The fact an estimator has converged does not mean that the
|
||||
* model accurately fits the measurements. It only means no better
|
||||
* solution can be found, it does not mean this one is good. Such an
|
||||
* analysis is left to the caller.</p>
|
||||
*
|
||||
* <p>If neither conditions are fulfilled before a given number of
|
||||
* iterations, the algorithm is considered to have failed and an
|
||||
* {@link EstimationException} is thrown.</p>
|
||||
*
|
||||
* @param maxIterations maximum number of iterations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has converged has reached a steady state if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
*/
|
||||
public GaussNewtonEstimator(int maxIterations,
|
||||
double convergence,
|
||||
double steadyStateThreshold) {
|
||||
this.maxIterations = maxIterations;
|
||||
this.steadyStateThreshold = steadyStateThreshold;
|
||||
this.convergence = convergence;
|
||||
}
|
||||
/**
|
||||
* Simple constructor.
|
||||
*
|
||||
* <p>This constructor builds an estimator and stores its convergence
|
||||
* characteristics.</p>
|
||||
*
|
||||
* <p>An estimator is considered to have converged whenever either
|
||||
* the criterion goes below a physical threshold under which
|
||||
* improvements are considered useless or when the algorithm is
|
||||
* unable to improve it (even if it is still high). The first
|
||||
* condition that is met stops the iterations.</p>
|
||||
*
|
||||
* <p>The fact an estimator has converged does not mean that the
|
||||
* model accurately fits the measurements. It only means no better
|
||||
* solution can be found, it does not mean this one is good. Such an
|
||||
* analysis is left to the caller.</p>
|
||||
*
|
||||
* <p>If neither conditions are fulfilled before a given number of
|
||||
* iterations, the algorithm is considered to have failed and an
|
||||
* {@link EstimationException} is thrown.</p>
|
||||
*
|
||||
* @param maxCostEval maximal number of cost evaluations allowed
|
||||
* @param convergence criterion threshold below which we do not need
|
||||
* to improve the criterion anymore
|
||||
* @param steadyStateThreshold steady state detection threshold, the
|
||||
* problem has converged has reached a steady state if
|
||||
* <code>Math.abs (Jn - Jn-1) < Jn * convergence</code>, where
|
||||
* <code>Jn</code> and <code>Jn-1</code> are the current and
|
||||
* preceding criterion value (square sum of the weighted residuals
|
||||
* of considered measurements).
|
||||
*/
|
||||
public GaussNewtonEstimator(int maxCostEval,
|
||||
double convergence,
|
||||
double steadyStateThreshold) {
|
||||
setMaxCostEval(maxCostEval);
|
||||
this.steadyStateThreshold = steadyStateThreshold;
|
||||
this.convergence = convergence;
|
||||
}
|
||||
|
||||
/**
|
||||
* Solve an estimation problem using a least squares criterion.
|
||||
*
|
||||
* <p>This method set the unbound parameters of the given problem
|
||||
* starting from their current values through several iterations. At
|
||||
* each step, the unbound parameters are changed in order to
|
||||
* minimize a weighted least square criterion based on the
|
||||
* measurements of the problem.</p>
|
||||
*
|
||||
* <p>The iterations are stopped either when the criterion goes
|
||||
* below a physical threshold under which improvement are considered
|
||||
* useless or when the algorithm is unable to improve it (even if it
|
||||
* is still high). The first condition that is met stops the
|
||||
* iterations. If the convergence it nos reached before the maximum
|
||||
* number of iterations, an {@link EstimationException} is
|
||||
* thrown.</p>
|
||||
*
|
||||
* @param problem estimation problem to solve
|
||||
* @exception EstimationException if the problem cannot be solved
|
||||
*
|
||||
* @see EstimationProblem
|
||||
*
|
||||
*/
|
||||
public void estimate(EstimationProblem problem)
|
||||
throws EstimationException {
|
||||
int iterations = 0;
|
||||
double previous = 0.0;
|
||||
double current = 0.0;
|
||||
|
||||
// iterate until convergence is reached
|
||||
do {
|
||||
|
||||
if (++iterations > maxIterations) {
|
||||
throw new EstimationException ("unable to converge in {0} iterations",
|
||||
new String[] {
|
||||
Integer.toString(maxIterations)
|
||||
});
|
||||
}
|
||||
|
||||
// perform one iteration
|
||||
linearEstimate(problem);
|
||||
|
||||
previous = current;
|
||||
current = evaluateCriterion(problem);
|
||||
|
||||
} while ((iterations < 2)
|
||||
|| (Math.abs(previous - current) > (current * steadyStateThreshold)
|
||||
&& (Math.abs(current) > convergence)));
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Estimate the solution of a linear least square problem.
|
||||
*
|
||||
* <p>The Gauss-Newton algorithm is iterative. Each iteration
|
||||
* consists in solving a linearized least square problem. Several
|
||||
* iterations are needed for general problems since the
|
||||
* linearization is only an approximation of the problem
|
||||
* behaviour. However, for linear problems one iteration is enough
|
||||
* to get the solution. This method is provided in the public
|
||||
* interface in order to handle more efficiently these linear
|
||||
* problems.</p>
|
||||
*
|
||||
* @param problem estimation problem to solve
|
||||
* @exception EstimationException if the problem cannot be solved
|
||||
*
|
||||
*/
|
||||
public void linearEstimate(EstimationProblem problem)
|
||||
/**
|
||||
* Solve an estimation problem using a least squares criterion.
|
||||
*
|
||||
* <p>This method set the unbound parameters of the given problem
|
||||
* starting from their current values through several iterations. At
|
||||
* each step, the unbound parameters are changed in order to
|
||||
* minimize a weighted least square criterion based on the
|
||||
* measurements of the problem.</p>
|
||||
*
|
||||
* <p>The iterations are stopped either when the criterion goes
|
||||
* below a physical threshold under which improvement are considered
|
||||
* useless or when the algorithm is unable to improve it (even if it
|
||||
* is still high). The first condition that is met stops the
|
||||
* iterations. If the convergence it nos reached before the maximum
|
||||
* number of iterations, an {@link EstimationException} is
|
||||
* thrown.</p>
|
||||
*
|
||||
* @param problem estimation problem to solve
|
||||
* @exception EstimationException if the problem cannot be solved
|
||||
*
|
||||
* @see EstimationProblem
|
||||
*
|
||||
*/
|
||||
public void estimate(EstimationProblem problem)
|
||||
throws EstimationException {
|
||||
|
||||
EstimatedParameter[] parameters = problem.getUnboundParameters();
|
||||
WeightedMeasurement[] measurements = problem.getMeasurements();
|
||||
initializeEstimate(problem);
|
||||
|
||||
// build the linear problem
|
||||
RealMatrix b = new RealMatrixImpl(parameters.length, 1);
|
||||
RealMatrix a = new RealMatrixImpl(parameters.length, parameters.length);
|
||||
double[] grad = new double[parameters.length];
|
||||
RealMatrixImpl bDecrement = new RealMatrixImpl(parameters.length, 1);
|
||||
double[][] bDecrementData = bDecrement.getDataRef();
|
||||
RealMatrixImpl wGradGradT = new RealMatrixImpl(parameters.length, parameters.length);
|
||||
double[][] wggData = wGradGradT.getDataRef();
|
||||
for (int i = 0; i < measurements.length; ++i) {
|
||||
if (! measurements [i].isIgnored()) {
|
||||
// work matrices
|
||||
double[] grad = new double[parameters.length];
|
||||
RealMatrixImpl bDecrement = new RealMatrixImpl(parameters.length, 1);
|
||||
double[][] bDecrementData = bDecrement.getDataRef();
|
||||
RealMatrixImpl wGradGradT = new RealMatrixImpl(parameters.length, parameters.length);
|
||||
double[][] wggData = wGradGradT.getDataRef();
|
||||
|
||||
double weight = measurements[i].getWeight();
|
||||
double residual = measurements[i].getResidual();
|
||||
// iterate until convergence is reached
|
||||
double previous = Double.POSITIVE_INFINITY;
|
||||
do {
|
||||
|
||||
// compute the normal equation
|
||||
for (int j = 0; j < parameters.length; ++j) {
|
||||
grad[j] = measurements[i].getPartial(parameters[j]);
|
||||
bDecrementData[j][0] = weight * residual * grad[j];
|
||||
}
|
||||
// build the linear problem
|
||||
++jacobianEvaluations;
|
||||
RealMatrix b = new RealMatrixImpl(parameters.length, 1);
|
||||
RealMatrix a = new RealMatrixImpl(parameters.length, parameters.length);
|
||||
for (int i = 0; i < measurements.length; ++i) {
|
||||
if (! measurements [i].isIgnored()) {
|
||||
|
||||
double weight = measurements[i].getWeight();
|
||||
double residual = measurements[i].getResidual();
|
||||
|
||||
// compute the normal equation
|
||||
for (int j = 0; j < parameters.length; ++j) {
|
||||
grad[j] = measurements[i].getPartial(parameters[j]);
|
||||
bDecrementData[j][0] = weight * residual * grad[j];
|
||||
}
|
||||
|
||||
// build the contribution matrix for measurement i
|
||||
for (int k = 0; k < parameters.length; ++k) {
|
||||
double[] wggRow = wggData[k];
|
||||
double gk = grad[k];
|
||||
for (int l = 0; l < parameters.length; ++l) {
|
||||
wggRow[l] = weight * gk * grad[l];
|
||||
}
|
||||
}
|
||||
|
||||
// update the matrices
|
||||
a = a.add(wGradGradT);
|
||||
b = b.add(bDecrement);
|
||||
|
||||
// build the contribution matrix for measurement i
|
||||
for (int k = 0; k < parameters.length; ++k) {
|
||||
double[] wggRow = wggData[k];
|
||||
double gk = grad[k];
|
||||
for (int l = 0; l < parameters.length; ++l) {
|
||||
wggRow[l] = weight * gk * grad[l];
|
||||
}
|
||||
}
|
||||
|
||||
// update the matrices
|
||||
a = a.add(wGradGradT);
|
||||
b = b.add(bDecrement);
|
||||
try {
|
||||
|
||||
// solve the linearized least squares problem
|
||||
RealMatrix dX = a.solve(b);
|
||||
|
||||
// update the estimated parameters
|
||||
for (int i = 0; i < parameters.length; ++i) {
|
||||
parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i, 0));
|
||||
}
|
||||
|
||||
} catch(InvalidMatrixException e) {
|
||||
throw new EstimationException("unable to solve: singular problem", new Object[0]);
|
||||
}
|
||||
|
||||
|
||||
previous = cost;
|
||||
updateResidualsAndCost();
|
||||
|
||||
} while ((getCostEvaluations() < 2)
|
||||
|| (Math.abs(previous - cost) > (cost * steadyStateThreshold)
|
||||
&& (Math.abs(cost) > convergence)));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
private double steadyStateThreshold;
|
||||
private double convergence;
|
||||
|
||||
// solve the linearized least squares problem
|
||||
RealMatrix dX = a.solve(b);
|
||||
|
||||
// update the estimated parameters
|
||||
for (int i = 0; i < parameters.length; ++i) {
|
||||
parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i, 0));
|
||||
}
|
||||
|
||||
} catch(InvalidMatrixException e) {
|
||||
throw new EstimationException(e);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private double evaluateCriterion(EstimationProblem problem) {
|
||||
double criterion = 0.0;
|
||||
WeightedMeasurement[] measurements = problem.getMeasurements();
|
||||
|
||||
for (int i = 0; i < measurements.length; ++i) {
|
||||
double residual = measurements[i].getResidual();
|
||||
criterion += measurements[i].getWeight() * residual * residual;
|
||||
}
|
||||
|
||||
return criterion;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the Root Mean Square value.
|
||||
* Get the Root Mean Square value, i.e. the root of the arithmetic
|
||||
* mean of the square of all weighted residuals. This is related to the
|
||||
* criterion that is minimized by the estimator as follows: if
|
||||
* <em>c</em> if the criterion, and <em>n</em> is the number of
|
||||
* measurements, then the RMS is <em>sqrt (c/n)</em>.
|
||||
* @param problem estimation problem
|
||||
* @return RMS value
|
||||
*/
|
||||
public double getRMS(EstimationProblem problem) {
|
||||
double criterion = evaluateCriterion(problem);
|
||||
int n = problem.getMeasurements().length;
|
||||
return Math.sqrt(criterion / n);
|
||||
}
|
||||
|
||||
private int maxIterations;
|
||||
private double steadyStateThreshold;
|
||||
private double convergence;
|
||||
|
||||
private static final long serialVersionUID = -7606628156644194170L;
|
||||
private static final long serialVersionUID = 5485001826076289109L;
|
||||
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.apache.commons.math.estimation;
|
|||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
|
||||
|
||||
/**
|
||||
* This class solves a least squares problem.
|
||||
*
|
||||
|
@ -92,7 +93,7 @@ import java.util.Arrays;
|
|||
* @author Kenneth E. Hillstrom (original fortran)
|
||||
* @author Jorge J. More (original fortran)
|
||||
*/
|
||||
public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
||||
public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable {
|
||||
|
||||
/**
|
||||
* Build an estimator for least squares problems.
|
||||
|
@ -107,12 +108,16 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
* </p>
|
||||
*/
|
||||
public LevenbergMarquardtEstimator() {
|
||||
|
||||
// set up the superclass with a default max cost evaluations setting
|
||||
setMaxCostEval(1000);
|
||||
|
||||
// default values for the tuning parameters
|
||||
setInitialStepBoundFactor(100.0);
|
||||
setMaxCostEval(1000);
|
||||
setCostRelativeTolerance(1.0e-10);
|
||||
setParRelativeTolerance(1.0e-10);
|
||||
setOrthoTolerance(1.0e-10);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -128,16 +133,6 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
this.initialStepBoundFactor = initialStepBoundFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the maximal number of cost evaluations.
|
||||
*
|
||||
* @param maxCostEval maximal number of cost evaluations
|
||||
* @see #estimate
|
||||
*/
|
||||
public void setMaxCostEval(int maxCostEval) {
|
||||
this.maxCostEval = maxCostEval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the desired relative error in the sum of squares.
|
||||
*
|
||||
|
@ -170,75 +165,6 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
this.orthoTolerance = orthoTolerance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the number of cost evaluations.
|
||||
*
|
||||
* @return number of cost evaluations
|
||||
* */
|
||||
public int getCostEvaluations() {
|
||||
return costEvaluations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the number of jacobian evaluations.
|
||||
*
|
||||
* @return number of jacobian evaluations
|
||||
* */
|
||||
public int getJacobianEvaluations() {
|
||||
return jacobianEvaluations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the jacobian matrix.
|
||||
*/
|
||||
private void updateJacobian() {
|
||||
++jacobianEvaluations;
|
||||
Arrays.fill(jacobian, 0);
|
||||
for (int i = 0, index = 0; i < rows; i++) {
|
||||
WeightedMeasurement wm = measurements[i];
|
||||
double factor = -Math.sqrt(wm.getWeight());
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
jacobian[index++] = factor * wm.getPartial(parameters[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the residuals array and cost function value.
|
||||
*/
|
||||
private void updateResidualsAndCost() {
|
||||
++costEvaluations;
|
||||
cost = 0;
|
||||
for (int i = 0, index = 0; i < rows; i++, index += cols) {
|
||||
WeightedMeasurement wm = measurements[i];
|
||||
double residual = wm.getResidual();
|
||||
residuals[i] = Math.sqrt(wm.getWeight()) * residual;
|
||||
cost += wm.getWeight() * residual * residual;
|
||||
}
|
||||
cost = Math.sqrt(cost);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the Root Mean Square value.
|
||||
* Get the Root Mean Square value, i.e. the root of the arithmetic
|
||||
* mean of the square of all weighted residuals. This is related to the
|
||||
* criterion that is minimized by the estimator as follows: if
|
||||
* <em>c</em> if the criterion, and <em>n</em> is the number of
|
||||
* measurements, then the RMS is <em>sqrt (c/n)</em>.
|
||||
*
|
||||
* @param problem estimation problem
|
||||
* @return RMS value
|
||||
*/
|
||||
public double getRMS(EstimationProblem problem) {
|
||||
WeightedMeasurement[] wm = problem.getMeasurements();
|
||||
double criterion = 0;
|
||||
for (int i = 0; i < wm.length; ++i) {
|
||||
double residual = wm[i].getResidual();
|
||||
criterion += wm[i].getWeight() * residual * residual;
|
||||
}
|
||||
return Math.sqrt(criterion / wm.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Solve an estimation problem using the Levenberg-Marquardt algorithm.
|
||||
* <p>The algorithm used is a modified Levenberg-Marquardt one, based
|
||||
|
@ -263,7 +189,6 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
* reached with the specified algorithm settings or if there are more variables
|
||||
* than equations
|
||||
* @see #setInitialStepBoundFactor
|
||||
* @see #setMaxCostEval
|
||||
* @see #setCostRelativeTolerance
|
||||
* @see #setParRelativeTolerance
|
||||
* @see #setOrthoTolerance
|
||||
|
@ -271,21 +196,15 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
public void estimate(EstimationProblem problem)
|
||||
throws EstimationException {
|
||||
|
||||
// retrieve the equations and the parameters
|
||||
measurements = problem.getMeasurements();
|
||||
parameters = problem.getUnboundParameters();
|
||||
initializeEstimate(problem);
|
||||
|
||||
// arrays shared with the other private methods
|
||||
rows = measurements.length;
|
||||
cols = parameters.length;
|
||||
solvedCols = Math.min(rows, cols);
|
||||
jacobian = new double[rows * cols];
|
||||
diagR = new double[cols];
|
||||
jacNorm = new double[cols];
|
||||
beta = new double[cols];
|
||||
permutation = new int[cols];
|
||||
lmDir = new double[cols];
|
||||
residuals = new double[rows];
|
||||
|
||||
// local variables
|
||||
double delta = 0, xNorm = 0;
|
||||
|
@ -300,11 +219,9 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
updateResidualsAndCost();
|
||||
|
||||
// outer loop
|
||||
lmPar = 0;
|
||||
costEvaluations = 0;
|
||||
jacobianEvaluations = 0;
|
||||
lmPar = 0;
|
||||
boolean firstIteration = true;
|
||||
while (costEvaluations < maxCostEval) {
|
||||
while (true) {
|
||||
|
||||
// compute the Q.R. decomposition of the jacobian matrix
|
||||
updateJacobian();
|
||||
|
@ -477,42 +394,28 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
|
||||
// tests for termination and stringent tolerances
|
||||
// (2.2204e-16 is the machine epsilon for IEEE754)
|
||||
if (costEvaluations >= maxCostEval) {
|
||||
break;
|
||||
}
|
||||
if ((Math.abs(actRed) <= 2.2204e-16)
|
||||
&& (preRed <= 2.2204e-16)
|
||||
&& (ratio <= 2.0)) {
|
||||
throw new EstimationException("cost relative tolerance is too small ({0}),"
|
||||
+ " no further reduction in the"
|
||||
+ " sum of squares is possible",
|
||||
new String[] {
|
||||
Double.toString(costRelativeTolerance)
|
||||
});
|
||||
new Object[] { new Double(costRelativeTolerance) });
|
||||
} else if (delta <= 2.2204e-16 * xNorm) {
|
||||
throw new EstimationException("parameters relative tolerance is too small"
|
||||
+ " ({0}), no further improvement in"
|
||||
+ " the approximate solution is possible",
|
||||
new String[] {
|
||||
Double.toString(parRelativeTolerance)
|
||||
});
|
||||
new Object[] { new Double(parRelativeTolerance) });
|
||||
} else if (maxCosine <= 2.2204e-16) {
|
||||
throw new EstimationException("orthogonality tolerance is too small ({0}),"
|
||||
+ " solution is orthogonal to the jacobian",
|
||||
new String[] {
|
||||
Double.toString(orthoTolerance)
|
||||
});
|
||||
new Object[] { new Double(orthoTolerance) });
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
throw new EstimationException("maximal number of evaluations exceeded ({0})",
|
||||
new String[] {
|
||||
Integer.toString(maxCostEval)
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -919,29 +822,9 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
}
|
||||
}
|
||||
|
||||
/** Array of measurements. */
|
||||
private WeightedMeasurement[] measurements;
|
||||
|
||||
/** Array of parameters. */
|
||||
private EstimatedParameter[] parameters;
|
||||
|
||||
/**
|
||||
* Jacobian matrix.
|
||||
* <p>Depending on the computation phase, this matrix is either in
|
||||
* canonical form (just after the calls to updateJacobian) or in
|
||||
* Q.R. decomposed form (after calls to qrDecomposition)</p>
|
||||
*/
|
||||
private double[] jacobian;
|
||||
|
||||
/** Number of columns of the jacobian matrix. */
|
||||
private int cols;
|
||||
|
||||
/** Number of solved variables. */
|
||||
private int solvedCols;
|
||||
|
||||
/** Number of rows of the jacobian matrix. */
|
||||
private int rows;
|
||||
|
||||
/** Diagonal elements of the R matrix in the Q.R. decomposition. */
|
||||
private double[] diagR;
|
||||
|
||||
|
@ -963,28 +846,9 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
/** Parameters evolution direction associated with lmPar. */
|
||||
private double[] lmDir;
|
||||
|
||||
/** Residuals array.
|
||||
* <p>Depending on the computation phase, this array is either in
|
||||
* canonical form (just after the calls to updateResiduals) or in
|
||||
* premultiplied by Qt form (just after calls to qTy)</p>
|
||||
*/
|
||||
private double[] residuals;
|
||||
|
||||
/** Cost value (square root of the sum of the residuals). */
|
||||
private double cost;
|
||||
|
||||
/** Positive input variable used in determining the initial step bound. */
|
||||
private double initialStepBoundFactor;
|
||||
|
||||
/** Maximal number of cost evaluations. */
|
||||
private int maxCostEval;
|
||||
|
||||
/** Number of cost evaluations. */
|
||||
private int costEvaluations;
|
||||
|
||||
/** Number of jacobian evaluations. */
|
||||
private int jacobianEvaluations;
|
||||
|
||||
/** Desired relative error in the sum of squares. */
|
||||
private double costRelativeTolerance;
|
||||
|
||||
|
@ -995,6 +859,6 @@ public class LevenbergMarquardtEstimator implements Serializable, Estimator {
|
|||
* and the columns of the jacobian. */
|
||||
private double orthoTolerance;
|
||||
|
||||
private static final long serialVersionUID = 5387476316105068340L;
|
||||
private static final long serialVersionUID = -5705952631533171019L;
|
||||
|
||||
}
|
||||
|
|
|
@ -110,6 +110,14 @@ public class LevenbergMarquardtEstimatorTest
|
|||
LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator();
|
||||
estimator.estimate(problem);
|
||||
assertEquals(0, estimator.getRMS(problem), 1.0e-10);
|
||||
try {
|
||||
estimator.guessParametersErrors(problem);
|
||||
fail("an exception should have been thrown");
|
||||
} catch (EstimationException ee) {
|
||||
// expected behavior
|
||||
} catch (Exception e) {
|
||||
fail("wrong exception caught");
|
||||
}
|
||||
assertEquals(1.5,
|
||||
problem.getUnboundParameters()[0].getEstimate(),
|
||||
1.0e-10);
|
||||
|
@ -267,7 +275,15 @@ public class LevenbergMarquardtEstimatorTest
|
|||
estimator.estimate(problem);
|
||||
assertTrue(estimator.getRMS(problem) < initialCost);
|
||||
assertTrue(Math.sqrt(m.length) * estimator.getRMS(problem) > 0.6);
|
||||
double dJ0 = 2 * (m[0].getResidual() * m[0].getPartial(p[0])
|
||||
try {
|
||||
estimator.getCovariances(problem);
|
||||
fail("an exception should have been thrown");
|
||||
} catch (EstimationException ee) {
|
||||
// expected behavior
|
||||
} catch (Exception e) {
|
||||
fail("wrong exception caught");
|
||||
}
|
||||
double dJ0 = 2 * (m[0].getResidual() * m[0].getPartial(p[0])
|
||||
+ m[1].getResidual() * m[1].getPartial(p[0])
|
||||
+ m[2].getResidual() * m[2].getPartial(p[0]));
|
||||
double dJ1 = 2 * (m[0].getResidual() * m[0].getPartial(p[1])
|
||||
|
@ -496,7 +512,34 @@ public class LevenbergMarquardtEstimatorTest
|
|||
assertEquals(69.96016176931406, circle.getRadius(), 1.0e-10);
|
||||
assertEquals(96.07590211815305, circle.getX(), 1.0e-10);
|
||||
assertEquals(48.13516790438953, circle.getY(), 1.0e-10);
|
||||
}
|
||||
double[][] cov = estimator.getCovariances(circle);
|
||||
assertEquals(1.839, cov[0][0], 0.001);
|
||||
assertEquals(0.731, cov[0][1], 0.001);
|
||||
assertEquals(cov[0][1], cov[1][0], 1.0e-14);
|
||||
assertEquals(0.786, cov[1][1], 0.001);
|
||||
double[] errors = estimator.guessParametersErrors(circle);
|
||||
assertEquals(1.384, errors[0], 0.001);
|
||||
assertEquals(0.905, errors[1], 0.001);
|
||||
|
||||
// add perfect measurements and check errors are reduced
|
||||
double cx = circle.getX();
|
||||
double cy = circle.getY();
|
||||
double r = circle.getRadius();
|
||||
for (double d= 0; d < 2 * Math.PI; d += 0.01) {
|
||||
circle.addPoint(cx + r * Math.cos(d), cy + r * Math.sin(d));
|
||||
}
|
||||
estimator = new LevenbergMarquardtEstimator();
|
||||
estimator.estimate(circle);
|
||||
cov = estimator.getCovariances(circle);
|
||||
assertEquals(0.004, cov[0][0], 0.001);
|
||||
assertEquals(6.40e-7, cov[0][1], 1.0e-9);
|
||||
assertEquals(cov[0][1], cov[1][0], 1.0e-14);
|
||||
assertEquals(0.003, cov[1][1], 0.001);
|
||||
errors = estimator.guessParametersErrors(circle);
|
||||
assertEquals(0.004, errors[0], 0.001);
|
||||
assertEquals(0.004, errors[1], 0.001);
|
||||
|
||||
}
|
||||
|
||||
public void testCircleFittingBadInit() throws EstimationException {
|
||||
Circle circle = new Circle(-12, -12);
|
||||
|
|
|
@ -124,6 +124,9 @@ Commons Math Release Notes</title>
|
|||
<action dev="luc" type="fix" issue="MATH-164">
|
||||
Handle multiplication of Complex numbers with infinite parts specially.
|
||||
</action>
|
||||
<action dev="luc" type="update" issue="MATH-176" due-to="Kazuhiro Koshino">
|
||||
Add errors guessing to least-squares estimators.
|
||||
</action>
|
||||
</release>
|
||||
<release version="1.1" date="2005-12-17"
|
||||
description="This is a maintenance release containing bug fixes and enhancements.
|
||||
|
|
Loading…
Reference in New Issue