diff --git a/src/java/org/apache/commons/math/analysis/SplineInterpolator.java b/src/java/org/apache/commons/math/analysis/SplineInterpolator.java index 65b1c0e06..9c4e63501 100644 --- a/src/java/org/apache/commons/math/analysis/SplineInterpolator.java +++ b/src/java/org/apache/commons/math/analysis/SplineInterpolator.java @@ -39,7 +39,7 @@ import java.io.Serializable; * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires, * Numerical Analysis, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131. * - * @version $Revision: 1.16 $ $Date: 2004/04/27 04:37:58 $ + * @version $Revision: 1.17 $ $Date: 2004/05/22 19:59:22 $ * */ public class SplineInterpolator implements UnivariateRealInterpolator, Serializable { @@ -69,27 +69,22 @@ public class SplineInterpolator implements UnivariateRealInterpolator, Serializa } } + // Differences between knot points double h[] = new double[n]; for (int i = 0; i < n; i++) { h[i] = x[i + 1] - x[i]; } - double alpha[] = new double[n]; - for (int i = 1; i < n; i++) { - alpha[i] = 3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) / - (h[i - 1] * h[i]); - } - - double l[] = new double[n + 1]; double mu[] = new double[n]; double z[] = new double[n + 1]; - l[0] = 1d; mu[0] = 0d; z[0] = 0d; + double g = 0; for (int i = 1; i < n; i++) { - l[i] = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1]; - mu[i] = h[i] / l[i]; - z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i]; + g = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1]; + mu[i] = h[i] / g; + z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) / + (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g; } // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants) @@ -97,7 +92,6 @@ public class SplineInterpolator implements UnivariateRealInterpolator, Serializa double c[] = new double[n + 1]; double d[] = new double[n]; - l[n] = 1d; z[n] = 0d; c[n] = 0d;