diff --git a/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java b/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java
new file mode 100644
index 000000000..8728c7bff
--- /dev/null
+++ b/src/java/org/apache/commons/math/optimization/general/AbstractLeastSquaresOptimizer.java
@@ -0,0 +1,319 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.optimization.general;
+
+import org.apache.commons.math.linear.InvalidMatrixException;
+import org.apache.commons.math.linear.MatrixUtils;
+import org.apache.commons.math.linear.RealMatrix;
+import org.apache.commons.math.linear.decomposition.LUDecompositionImpl;
+import org.apache.commons.math.optimization.ObjectiveException;
+import org.apache.commons.math.optimization.OptimizationException;
+import org.apache.commons.math.optimization.SimpleVectorialValueChecker;
+import org.apache.commons.math.optimization.VectorialConvergenceChecker;
+import org.apache.commons.math.optimization.VectorialDifferentiableObjectiveFunction;
+import org.apache.commons.math.optimization.VectorialDifferentiableOptimizer;
+import org.apache.commons.math.optimization.VectorialPointValuePair;
+
+/**
+ * Base class for implementing estimators.
+ *
This base class handles the boilerplates methods associated to thresholds
+ * settings, jacobian and error estimation.
+ * @version $Revision$ $Date$
+ * @since 1.2
+ *
+ */
+public abstract class AbstractLeastSquaresOptimizer implements VectorialDifferentiableOptimizer {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -3080152374642370722L;
+
+ /** Default maximal number of objective function evaluations allowed. */
+ public static final int DEFAULT_MAX_EVALUATIONS = 100;
+
+ /** Number of evaluations already performed for the current start. */
+ private int objectiveEvaluations;
+
+ /** Number of jacobian evaluations. */
+ private int jacobianEvaluations;
+
+ /** Maximal number of evaluations allowed. */
+ private int maxEvaluations;
+
+ /** Convergence checker. */
+ protected VectorialConvergenceChecker checker;
+
+ /**
+ * Jacobian matrix.
+ * This matrix is in canonical form just after the calls to
+ * {@link #updateJacobian()}, but may be modified by the solver
+ * in the derived class (the {@link LevenbergMarquardtEstimator
+ * Levenberg-Marquardt estimator} does this).
+ */
+ protected double[][] jacobian;
+
+ /** Number of columns of the jacobian matrix. */
+ protected int cols;
+
+ /** Number of rows of the jacobian matrix. */
+ protected int rows;
+
+ /** Objective function. */
+ private VectorialDifferentiableObjectiveFunction f;
+
+ /** Target value for the objective functions at optimum. */
+ protected double[] target;
+
+ /** Weight for the least squares cost computation. */
+ protected double[] weights;
+
+ /** Current variables set. */
+ protected double[] variables;
+
+ /** Current objective function value. */
+ protected double[] objective;
+
+ /** Cost value (square root of the sum of the residuals). */
+ protected double cost;
+
+ /** Simple constructor with default settings.
+ * The convergence check is set to a {@link SimpleVectorialValueChecker}
+ * and the maximal number of evaluation is set to its default value.
+ */
+ protected AbstractLeastSquaresOptimizer() {
+ setConvergenceChecker(new SimpleVectorialValueChecker());
+ setMaxEvaluations(DEFAULT_MAX_EVALUATIONS);
+ }
+
+ /** {@inheritDoc} */
+ public void setMaxEvaluations(int maxEvaluations) {
+ this.maxEvaluations = maxEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return maxEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return objectiveEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public void setConvergenceChecker(VectorialConvergenceChecker checker) {
+ this.checker = checker;
+ }
+
+ /** {@inheritDoc} */
+ public VectorialConvergenceChecker getConvergenceChecker() {
+ return checker;
+ }
+
+ /**
+ * Update the jacobian matrix.
+ * @exception ObjectiveException if the function jacobian
+ * cannot be evaluated or its dimension doesn't match problem dimension
+ */
+ protected void updateJacobian() throws ObjectiveException {
+ incrementJacobianEvaluationsCounter();
+ jacobian = f.jacobian(variables, objective);
+ if (jacobian.length != rows) {
+ throw new ObjectiveException("dimension mismatch {0} != {1}",
+ jacobian.length, rows);
+ }
+ for (int i = 0; i < rows; i++) {
+ final double[] ji = jacobian[i];
+ final double factor = -Math.sqrt(weights[i]);
+ for (int j = 0; j < cols; ++j) {
+ ji[j] *= factor;
+ }
+ }
+ }
+
+ /**
+ * Increment the jacobian evaluations counter.
+ */
+ protected final void incrementJacobianEvaluationsCounter() {
+ ++jacobianEvaluations;
+ }
+
+ /**
+ * Update the residuals array and cost function value.
+ * @exception ObjectiveException if the function cannot be evaluated
+ * or its dimension doesn't match problem dimension
+ * @exception OptimizationException if the number of cost evaluations
+ * exceeds the maximum allowed
+ */
+ protected void updateResidualsAndCost()
+ throws ObjectiveException, OptimizationException {
+
+ if (++objectiveEvaluations > maxEvaluations) {
+ throw new OptimizationException(
+ "maximal number of evaluations exceeded ({0})",
+ objectiveEvaluations);
+ }
+
+ objective = f.objective(variables);
+ if (objective.length != rows) {
+ throw new ObjectiveException("dimension mismatch {0} != {1}",
+ objective.length, rows);
+ }
+ cost = 0;
+ for (int i = 0, index = 0; i < rows; i++, index += cols) {
+ final double residual = objective[i] - target[i];
+ cost += weights[i] * residual * residual;
+ }
+ cost = Math.sqrt(cost);
+
+ }
+
+ /**
+ * Get the Root Mean Square value.
+ * Get the Root Mean Square value, i.e. the root of the arithmetic
+ * mean of the square of all weighted residuals. This is related to the
+ * criterion that is minimized by the estimator as follows: if
+ * c if the criterion, and n is the number of
+ * measurements, then the RMS is sqrt (c/n).
+ *
+ * @return RMS value
+ */
+ public double getRMS() {
+ double criterion = 0;
+ for (int i = 0; i < rows; ++i) {
+ final double residual = objective[i] - target[i];
+ criterion += weights[i] * residual * residual;
+ }
+ return Math.sqrt(criterion / rows);
+ }
+
+ /**
+ * Get the Chi-Square value.
+ * @return chi-square value
+ */
+ public double getChiSquare() {
+ double chiSquare = 0;
+ for (int i = 0; i < rows; ++i) {
+ final double residual = objective[i] - target[i];
+ chiSquare += residual * residual / weights[i];
+ }
+ return chiSquare;
+ }
+
+ /**
+ * Get the covariance matrix of unbound estimated parameters.
+ * @return covariance matrix
+ * @exception ObjectiveException if the function jacobian cannot
+ * be evaluated
+ * @exception OptimizationException if the covariance matrix
+ * cannot be computed (singular problem)
+ */
+ public double[][] getCovariances()
+ throws ObjectiveException, OptimizationException {
+
+ // set up the jacobian
+ updateJacobian();
+
+ // compute transpose(J).J, avoiding building big intermediate matrices
+ double[][] jTj = new double[cols][cols];
+ for (int i = 0; i < cols; ++i) {
+ final double[] ji = jacobian[i];
+ for (int j = i; j < cols; ++j) {
+ final double[] jj = jacobian[j];
+ double sum = 0;
+ for (int k = 0; k < rows; ++k) {
+ sum += ji[k] * jj[k];
+ }
+ jTj[i][j] = sum;
+ jTj[j][i] = sum;
+ }
+ }
+
+ try {
+ // compute the covariances matrix
+ RealMatrix inverse =
+ new LUDecompositionImpl(MatrixUtils.createRealMatrix(jTj)).getSolver().getInverse();
+ return inverse.getData();
+ } catch (InvalidMatrixException ime) {
+ throw new OptimizationException("unable to compute covariances: singular problem");
+ }
+
+ }
+
+ /**
+ * Guess the errors in unbound estimated parameters.
+ * Guessing is covariance-based, it only gives rough order of magnitude.
+ * @return errors in estimated parameters
+ * @exception ObjectiveException if the function jacobian cannot b evaluated
+ * @exception OptimizationException if the covariances matrix cannot be computed
+ * or the number of degrees of freedom is not positive (number of measurements
+ * lesser or equal to number of parameters)
+ */
+ public double[] guessParametersErrors()
+ throws ObjectiveException, OptimizationException {
+ if (rows <= cols) {
+ throw new OptimizationException(
+ "no degrees of freedom ({0} measurements, {1} parameters)",
+ rows, cols);
+ }
+ double[] errors = new double[cols];
+ final double c = Math.sqrt(getChiSquare() / (rows - cols));
+ double[][] covar = getCovariances();
+ for (int i = 0; i < errors.length; ++i) {
+ errors[i] = Math.sqrt(covar[i][i]) * c;
+ }
+ return errors;
+ }
+
+ /** {@inheritDoc} */
+ public VectorialPointValuePair optimize(final VectorialDifferentiableObjectiveFunction f,
+ final double[] target, final double[] weights,
+ final double[] startPoint)
+ throws ObjectiveException, OptimizationException, IllegalArgumentException {
+
+ if (target.length != weights.length) {
+ throw new OptimizationException("dimension mismatch {0} != {1}",
+ target.length, weights.length);
+ }
+
+ // reset counters
+ objectiveEvaluations = 0;
+ jacobianEvaluations = 0;
+
+ // store least squares problem characteristics
+ this.f = f;
+ this.target = target;
+ this.weights = weights;
+ this.variables = startPoint.clone();
+
+ // arrays shared with the other private methods
+ rows = target.length;
+ cols = variables.length;
+ jacobian = new double[rows][cols];
+
+ cost = Double.POSITIVE_INFINITY;
+
+ return doOptimize();
+
+ }
+
+ /** Perform the bulk of optimization algorithm.
+ */
+ abstract protected VectorialPointValuePair doOptimize()
+ throws ObjectiveException, OptimizationException, IllegalArgumentException;
+
+}
\ No newline at end of file
diff --git a/src/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizer.java b/src/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizer.java
new file mode 100644
index 000000000..ca1b1aad5
--- /dev/null
+++ b/src/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizer.java
@@ -0,0 +1,135 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.optimization.general;
+
+import org.apache.commons.math.linear.DenseRealMatrix;
+import org.apache.commons.math.linear.InvalidMatrixException;
+import org.apache.commons.math.linear.RealMatrix;
+import org.apache.commons.math.linear.decomposition.DecompositionSolver;
+import org.apache.commons.math.linear.decomposition.LUDecompositionImpl;
+import org.apache.commons.math.linear.decomposition.QRDecompositionImpl;
+import org.apache.commons.math.optimization.ObjectiveException;
+import org.apache.commons.math.optimization.OptimizationException;
+import org.apache.commons.math.optimization.SimpleVectorialValueChecker;
+import org.apache.commons.math.optimization.VectorialPointValuePair;
+
+/**
+ * Gauss-Newton least-squares solver.
+ *
+ * This class solve a least-square problem by solving the normal equations
+ * of the linearized problem at each iteration. Either LU decomposition or
+ * QR decomposition can be used to solve the normal equations. LU decomposition
+ * is faster but QR decomposition is more robust for difficult problems.
+ *
+ *
+ * @version $Revision$ $Date$
+ * @since 2.0
+ *
+ */
+
+public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 7011643996279553223L;
+
+ /** Indicator for using LU decomposition. */
+ private final boolean useLU;
+
+ /** Simple constructor with default settings.
+ * The convergence check is set to a {@link SimpleVectorialValueChecker}
+ * and the maximal number of evaluation is set to
+ * {@link AbstractLeastSquaresOptimizer#DEFAULT_MAX_EVALUATIONS}.
+ * @param useLU if true, the normal equations will be solved using LU
+ * decomposition, otherwise it will be solved using QR decomposition
+ */
+ public GaussNewtonOptimizer(final boolean useLU) {
+ this.useLU = useLU;
+ }
+
+ /** {@inheritDoc} */
+ public VectorialPointValuePair doOptimize()
+ throws ObjectiveException, OptimizationException, IllegalArgumentException {
+
+ // iterate until convergence is reached
+ VectorialPointValuePair current = null;
+ boolean converged = false;
+ for (int iteration = 1; ! converged; ++iteration) {
+
+ // evaluate the objective function and its jacobian
+ VectorialPointValuePair previous = current;
+ updateResidualsAndCost();
+ updateJacobian();
+ current = new VectorialPointValuePair(variables, objective);
+
+ // build the linear problem
+ final double[] b = new double[cols];
+ final double[][] a = new double[cols][cols];
+ for (int i = 0; i < rows; ++i) {
+
+ final double[] grad = jacobian[i];
+ final double weight = weights[i];
+ final double residual = objective[i] - target[i];
+
+ // compute the normal equation
+ final double wr = weight * residual;
+ for (int j = 0; j < cols; ++j) {
+ b[j] += wr * grad[j];
+ }
+
+ // build the contribution matrix for measurement i
+ for (int k = 0; k < cols; ++k) {
+ double[] ak = a[k];
+ double wgk = weight * grad[k];
+ for (int l = 0; l < cols; ++l) {
+ ak[l] += wgk * grad[l];
+ }
+ }
+
+ }
+
+ try {
+
+ // solve the linearized least squares problem
+ RealMatrix mA = new DenseRealMatrix(a);
+ DecompositionSolver solver = useLU ?
+ new LUDecompositionImpl(mA).getSolver() :
+ new QRDecompositionImpl(mA).getSolver();
+ final double[] dX = solver.solve(b);
+
+ // update the estimated parameters
+ for (int i = 0; i < cols; ++i) {
+ variables[i] += dX[i];
+ }
+
+ } catch(InvalidMatrixException e) {
+ throw new OptimizationException("unable to solve: singular problem");
+ }
+
+ // check convergence
+ if (previous != null) {
+ converged = checker.converged(++iteration, previous, current);
+ }
+
+ }
+
+ // we have converged
+ return current;
+
+ }
+
+}
diff --git a/src/test/org/apache/commons/math/optimization/general/GaussNewtonEstimatorTest.java b/src/test/org/apache/commons/math/optimization/general/GaussNewtonEstimatorTest.java
deleted file mode 100644
index af9c4f4dd..000000000
--- a/src/test/org/apache/commons/math/optimization/general/GaussNewtonEstimatorTest.java
+++ /dev/null
@@ -1,734 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math.optimization.general;
-
-import java.util.ArrayList;
-import java.util.HashSet;
-
-import org.apache.commons.math.optimization.OptimizationException;
-
-
-import junit.framework.Test;
-import junit.framework.TestCase;
-import junit.framework.TestSuite;
-
-/**
- *
Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files.
- * The redistribution policy for MINPACK is available here, for
- * convenience, it is reproduced below.
-
- *
- *
- * Minpack Copyright Notice (1999) University of Chicago.
- * All rights reserved
- * |
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * - Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- * - The end-user documentation included with the redistribution, if any,
- * must include the following acknowledgment:
- *
This product includes software developed by the University of
- * Chicago, as Operator of Argonne National Laboratory.
- * Alternately, this acknowledgment may appear in the software itself,
- * if and wherever such third-party acknowledgments normally appear.
- * - WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
- * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
- * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
- * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
- * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
- * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
- * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
- * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
- * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
- * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
- * BE CORRECTED.
- * - LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
- * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
- * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
- * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
- * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
- * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
- * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
- * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
- * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
- * POSSIBILITY OF SUCH LOSS OR DAMAGES.
- *
|
- *
-
- * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests)
- * @author Burton S. Garbow (original fortran minpack tests)
- * @author Kenneth E. Hillstrom (original fortran minpack tests)
- * @author Jorge J. More (original fortran minpack tests)
- * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
- */
-public class GaussNewtonEstimatorTest
- extends TestCase {
-
- public GaussNewtonEstimatorTest(String name) {
- super(name);
- }
-
- public void testTrivial() throws OptimizationException {
- LinearProblem problem =
- new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] {2},
- new EstimatedParameter[] {
- new EstimatedParameter("p0", 0)
- }, 3.0)
- });
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- assertEquals(1.5,
- problem.getUnboundParameters()[0].getEstimate(),
- 1.0e-10);
- }
-
- public void testQRColumnsPermutation() throws OptimizationException {
-
- EstimatedParameter[] x = {
- new EstimatedParameter("p0", 0), new EstimatedParameter("p1", 0)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, -1.0 },
- new EstimatedParameter[] { x[0], x[1] },
- 4.0),
- new LinearMeasurement(new double[] { 2.0 },
- new EstimatedParameter[] { x[1] },
- 6.0),
- new LinearMeasurement(new double[] { 1.0, -2.0 },
- new EstimatedParameter[] { x[0], x[1] },
- 1.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- assertEquals(7.0, x[0].getEstimate(), 1.0e-10);
- assertEquals(3.0, x[1].getEstimate(), 1.0e-10);
-
- }
-
- public void testNoDependency() throws OptimizationException {
- EstimatedParameter[] p = new EstimatedParameter[] {
- new EstimatedParameter("p0", 0),
- new EstimatedParameter("p1", 0),
- new EstimatedParameter("p2", 0),
- new EstimatedParameter("p3", 0),
- new EstimatedParameter("p4", 0),
- new EstimatedParameter("p5", 0)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[0] }, 0.0),
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[1] }, 1.1),
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[2] }, 2.2),
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[3] }, 3.3),
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[4] }, 4.4),
- new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[5] }, 5.5)
- });
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- for (int i = 0; i < p.length; ++i) {
- assertEquals(0.55 * i, p[i].getEstimate(), 1.0e-10);
- }
-}
-
- public void testOneSet() throws OptimizationException {
-
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 0),
- new EstimatedParameter("p1", 0),
- new EstimatedParameter("p2", 0)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0 },
- new EstimatedParameter[] { p[0] },
- 1.0),
- new LinearMeasurement(new double[] { -1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 1.0),
- new LinearMeasurement(new double[] { -1.0, 1.0 },
- new EstimatedParameter[] { p[1], p[2] },
- 1.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- assertEquals(1.0, p[0].getEstimate(), 1.0e-10);
- assertEquals(2.0, p[1].getEstimate(), 1.0e-10);
- assertEquals(3.0, p[2].getEstimate(), 1.0e-10);
-
- }
-
- public void testTwoSets() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 0),
- new EstimatedParameter("p1", 1),
- new EstimatedParameter("p2", 2),
- new EstimatedParameter("p3", 3),
- new EstimatedParameter("p4", 4),
- new EstimatedParameter("p5", 5)
- };
-
- double epsilon = 1.0e-7;
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
-
- // 4 elements sub-problem
- new LinearMeasurement(new double[] { 2.0, 1.0, 4.0 },
- new EstimatedParameter[] { p[0], p[1], p[3] },
- 2.0),
- new LinearMeasurement(new double[] { -4.0, -2.0, 3.0, -7.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- -9.0),
- new LinearMeasurement(new double[] { 4.0, 1.0, -2.0, 8.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 2.0),
- new LinearMeasurement(new double[] { -3.0, -12.0, -1.0 },
- new EstimatedParameter[] { p[1], p[2], p[3] },
- 2.0),
-
- // 2 elements sub-problem
- new LinearMeasurement(new double[] { epsilon, 1.0 },
- new EstimatedParameter[] { p[4], p[5] },
- 1.0 + epsilon * epsilon),
- new LinearMeasurement(new double[] { 1.0, 1.0 },
- new EstimatedParameter[] { p[4], p[5] },
- 2.0)
-
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- assertEquals( 3.0, p[0].getEstimate(), 1.0e-10);
- assertEquals( 4.0, p[1].getEstimate(), 1.0e-10);
- assertEquals(-1.0, p[2].getEstimate(), 1.0e-10);
- assertEquals(-2.0, p[3].getEstimate(), 1.0e-10);
- assertEquals( 1.0 + epsilon, p[4].getEstimate(), 1.0e-10);
- assertEquals( 1.0 - epsilon, p[5].getEstimate(), 1.0e-10);
-
- }
-
- public void testNonInversible() throws OptimizationException {
-
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 0),
- new EstimatedParameter("p1", 0),
- new EstimatedParameter("p2", 0)
- };
- LinearMeasurement[] m = new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, 2.0, -3.0 },
- new EstimatedParameter[] { p[0], p[1], p[2] },
- 1.0),
- new LinearMeasurement(new double[] { 2.0, 1.0, 3.0 },
- new EstimatedParameter[] { p[0], p[1], p[2] },
- 1.0),
- new LinearMeasurement(new double[] { -3.0, -9.0 },
- new EstimatedParameter[] { p[0], p[2] },
- 1.0)
- };
- LinearProblem problem = new LinearProblem(m);
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- try {
- estimator.estimate(problem);
- fail("an exception should have been caught");
- } catch (OptimizationException ee) {
- // expected behavior
- } catch (Exception e) {
- fail("wrong exception type caught");
- }
- }
-
- public void testIllConditioned() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 0),
- new EstimatedParameter("p1", 1),
- new EstimatedParameter("p2", 2),
- new EstimatedParameter("p3", 3)
- };
-
- LinearProblem problem1 = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 10.0, 7.0, 8.0, 7.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 32.0),
- new LinearMeasurement(new double[] { 7.0, 5.0, 6.0, 5.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 23.0),
- new LinearMeasurement(new double[] { 8.0, 6.0, 10.0, 9.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 33.0),
- new LinearMeasurement(new double[] { 7.0, 5.0, 9.0, 10.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 31.0)
- });
- GaussNewtonEstimator estimator1 = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator1.estimate(problem1);
- assertEquals(0, estimator1.getRMS(problem1), 1.0e-10);
- assertEquals(1.0, p[0].getEstimate(), 1.0e-10);
- assertEquals(1.0, p[1].getEstimate(), 1.0e-10);
- assertEquals(1.0, p[2].getEstimate(), 1.0e-10);
- assertEquals(1.0, p[3].getEstimate(), 1.0e-10);
-
- LinearProblem problem2 = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 10.0, 7.0, 8.1, 7.2 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 32.0),
- new LinearMeasurement(new double[] { 7.08, 5.04, 6.0, 5.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 23.0),
- new LinearMeasurement(new double[] { 8.0, 5.98, 9.89, 9.0 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 33.0),
- new LinearMeasurement(new double[] { 6.99, 4.99, 9.0, 9.98 },
- new EstimatedParameter[] { p[0], p[1], p[2], p[3] },
- 31.0)
- });
- GaussNewtonEstimator estimator2 = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator2.estimate(problem2);
- assertEquals(0, estimator2.getRMS(problem2), 1.0e-10);
- assertEquals(-81.0, p[0].getEstimate(), 1.0e-8);
- assertEquals(137.0, p[1].getEstimate(), 1.0e-8);
- assertEquals(-34.0, p[2].getEstimate(), 1.0e-8);
- assertEquals( 22.0, p[3].getEstimate(), 1.0e-8);
-
- }
-
- public void testMoreEstimatedParametersSimple() throws OptimizationException {
-
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 7),
- new EstimatedParameter("p1", 6),
- new EstimatedParameter("p2", 5),
- new EstimatedParameter("p3", 4)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 3.0, 2.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 7.0),
- new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 },
- new EstimatedParameter[] { p[1], p[2], p[3] },
- 3.0),
- new LinearMeasurement(new double[] { 2.0, 1.0 },
- new EstimatedParameter[] { p[0], p[2] },
- 5.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- try {
- estimator.estimate(problem);
- fail("an exception should have been caught");
- } catch (OptimizationException ee) {
- // expected behavior
- } catch (Exception e) {
- fail("wrong exception type caught");
- }
-
- }
-
- public void testMoreEstimatedParametersUnsorted() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 2),
- new EstimatedParameter("p1", 2),
- new EstimatedParameter("p2", 2),
- new EstimatedParameter("p3", 2),
- new EstimatedParameter("p4", 2),
- new EstimatedParameter("p5", 2)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 3.0),
- new LinearMeasurement(new double[] { 1.0, 1.0, 1.0 },
- new EstimatedParameter[] { p[2], p[3], p[4] },
- 12.0),
- new LinearMeasurement(new double[] { 1.0, -1.0 },
- new EstimatedParameter[] { p[4], p[5] },
- -1.0),
- new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 },
- new EstimatedParameter[] { p[3], p[2], p[5] },
- 7.0),
- new LinearMeasurement(new double[] { 1.0, -1.0 },
- new EstimatedParameter[] { p[4], p[3] },
- 1.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- try {
- estimator.estimate(problem);
- fail("an exception should have been caught");
- } catch (OptimizationException ee) {
- // expected behavior
- } catch (Exception e) {
- fail("wrong exception type caught");
- }
-
- }
-
- public void testRedundantEquations() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 1),
- new EstimatedParameter("p1", 1)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 3.0),
- new LinearMeasurement(new double[] { 1.0, -1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 1.0),
- new LinearMeasurement(new double[] { 1.0, 3.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 5.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertEquals(0, estimator.getRMS(problem), 1.0e-10);
- EstimatedParameter[] all = problem.getAllParameters();
- for (int i = 0; i < all.length; ++i) {
- assertEquals(all[i].getName().equals("p0") ? 2.0 : 1.0,
- all[i].getEstimate(), 1.0e-10);
- }
-
- }
-
- public void testInconsistentEquations() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("p0", 1),
- new EstimatedParameter("p1", 1)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 3.0),
- new LinearMeasurement(new double[] { 1.0, -1.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 1.0),
- new LinearMeasurement(new double[] { 1.0, 3.0 },
- new EstimatedParameter[] { p[0], p[1] },
- 4.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertTrue(estimator.getRMS(problem) > 0.1);
-
- }
-
- public void testBoundParameters() throws OptimizationException {
- EstimatedParameter[] p = {
- new EstimatedParameter("unbound0", 2, false),
- new EstimatedParameter("unbound1", 2, false),
- new EstimatedParameter("bound", 2, true)
- };
- LinearProblem problem = new LinearProblem(new LinearMeasurement[] {
- new LinearMeasurement(new double[] { 1.0, 1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1], p[2] },
- 3.0),
- new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 },
- new EstimatedParameter[] { p[0], p[1], p[2] },
- 1.0),
- new LinearMeasurement(new double[] { 1.0, 3.0, 2.0 },
- new EstimatedParameter[] { p[0], p[1], p[2] },
- 7.0)
- });
-
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- estimator.estimate(problem);
- assertTrue(estimator.getRMS(problem) < 1.0e-10);
- double[][] covariances = estimator.getCovariances(problem);
- int i0 = 0, i1 = 1;
- if (problem.getUnboundParameters()[0].getName().endsWith("1")) {
- i0 = 1;
- i1 = 0;
- }
- assertEquals(11.0 / 24, covariances[i0][i0], 1.0e-10);
- assertEquals(-3.0 / 24, covariances[i0][i1], 1.0e-10);
- assertEquals(-3.0 / 24, covariances[i1][i0], 1.0e-10);
- assertEquals( 3.0 / 24, covariances[i1][i1], 1.0e-10);
-
- double[] errors = estimator.guessParametersErrors(problem);
- assertEquals(0, errors[i0], 1.0e-10);
- assertEquals(0, errors[i1], 1.0e-10);
-
- }
-
- public void testMaxIterations() {
- Circle circle = new Circle(98.680, 47.345);
- circle.addPoint( 30.0, 68.0);
- circle.addPoint( 50.0, -6.0);
- circle.addPoint(110.0, -20.0);
- circle.addPoint( 35.0, 15.0);
- circle.addPoint( 45.0, 97.0);
- try {
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(4, 1.0e-14, 1.0e-14);
- estimator.estimate(circle);
- fail("an exception should have been caught");
- } catch (OptimizationException ee) {
- // expected behavior
- } catch (Exception e) {
- fail("wrong exception type caught");
- }
- }
-
- public void testCircleFitting() throws OptimizationException {
- Circle circle = new Circle(98.680, 47.345);
- circle.addPoint( 30.0, 68.0);
- circle.addPoint( 50.0, -6.0);
- circle.addPoint(110.0, -20.0);
- circle.addPoint( 35.0, 15.0);
- circle.addPoint( 45.0, 97.0);
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-10, 1.0e-10);
- estimator.estimate(circle);
- double rms = estimator.getRMS(circle);
- assertEquals(1.768262623567235, Math.sqrt(circle.getM()) * rms, 1.0e-10);
- assertEquals(69.96016176931406, circle.getRadius(), 1.0e-10);
- assertEquals(96.07590211815305, circle.getX(), 1.0e-10);
- assertEquals(48.13516790438953, circle.getY(), 1.0e-10);
- }
-
- public void testCircleFittingBadInit() throws OptimizationException {
- Circle circle = new Circle(-12, -12);
- double[][] points = new double[][] {
- {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724},
- {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619},
- {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832},
- {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235},
- { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201},
- { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718},
- {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862},
- {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526},
- {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398},
- {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513},
- {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737},
- { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850},
- { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138},
- {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578},
- {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926},
- {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068},
- {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119},
- {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560},
- { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807},
- { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174},
- { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635},
- {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251},
- {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597},
- {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428},
- {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380},
- {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077},
- { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681},
- { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022},
- {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526}
- };
- for (int i = 0; i < points.length; ++i) {
- circle.addPoint(points[i][0], points[i][1]);
- }
- GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6);
- try {
- estimator.estimate(circle);
- fail("an exception should have been caught");
- } catch (OptimizationException ee) {
- // expected behavior
- } catch (Exception e) {
- fail("wrong exception type caught");
- }
-}
-
- private static class LinearProblem extends SimpleEstimationProblem {
-
- public LinearProblem(LinearMeasurement[] measurements) {
- HashSet set = new HashSet();
- for (int i = 0; i < measurements.length; ++i) {
- addMeasurement(measurements[i]);
- EstimatedParameter[] parameters = measurements[i].getParameters();
- for (int j = 0; j < parameters.length; ++j) {
- set.add(parameters[j]);
- }
- }
- for (EstimatedParameter p : set) {
- addParameter(p);
- }
- }
-
- }
-
- private static class LinearMeasurement extends WeightedMeasurement {
-
- public LinearMeasurement(double[] factors, EstimatedParameter[] parameters,
- double setPoint) {
- super(1.0, setPoint, true);
- this.factors = factors;
- this.parameters = parameters;
- setIgnored(false);
- }
-
- public double getTheoreticalValue() {
- double v = 0;
- for (int i = 0; i < factors.length; ++i) {
- v += factors[i] * parameters[i].getEstimate();
- }
- return v;
- }
-
- public double getPartial(EstimatedParameter parameter) {
- for (int i = 0; i < parameters.length; ++i) {
- if (parameters[i] == parameter) {
- return factors[i];
- }
- }
- return 0;
- }
-
- public EstimatedParameter[] getParameters() {
- return parameters;
- }
-
- private double[] factors;
- private EstimatedParameter[] parameters;
- private static final long serialVersionUID = -3922448707008868580L;
-
- }
-
- private static class Circle implements EstimationProblem {
-
- public Circle(double cx, double cy) {
- this.cx = new EstimatedParameter("cx", cx);
- this.cy = new EstimatedParameter(new EstimatedParameter("cy", cy));
- points = new ArrayList();
- }
-
- public void addPoint(double px, double py) {
- points.add(new PointModel(px, py));
- }
-
- public int getM() {
- return points.size();
- }
-
- public WeightedMeasurement[] getMeasurements() {
- return (WeightedMeasurement[]) points.toArray(new PointModel[points.size()]);
- }
-
- public EstimatedParameter[] getAllParameters() {
- return new EstimatedParameter[] { cx, cy };
- }
-
- public EstimatedParameter[] getUnboundParameters() {
- return new EstimatedParameter[] { cx, cy };
- }
-
- public double getPartialRadiusX() {
- double dRdX = 0;
- for (PointModel point : points) {
- dRdX += point.getPartialDiX();
- }
- return dRdX / points.size();
- }
-
- public double getPartialRadiusY() {
- double dRdY = 0;
- for (PointModel point : points) {
- dRdY += point.getPartialDiY();
- }
- return dRdY / points.size();
- }
-
- public double getRadius() {
- double r = 0;
- for (PointModel point : points) {
- r += point.getCenterDistance();
- }
- return r / points.size();
- }
-
- public double getX() {
- return cx.getEstimate();
- }
-
- public double getY() {
- return cy.getEstimate();
- }
-
- private class PointModel extends WeightedMeasurement {
-
- public PointModel(double px, double py) {
- super(1.0, 0.0);
- this.px = px;
- this.py = py;
- }
-
- public double getPartial(EstimatedParameter parameter) {
- if (parameter == cx) {
- return getPartialDiX() - getPartialRadiusX();
- } else if (parameter == cy) {
- return getPartialDiY() - getPartialRadiusY();
- }
- return 0;
- }
-
- public double getCenterDistance() {
- double dx = px - cx.getEstimate();
- double dy = py - cy.getEstimate();
- return Math.sqrt(dx * dx + dy * dy);
- }
-
- public double getPartialDiX() {
- return (cx.getEstimate() - px) / getCenterDistance();
- }
-
- public double getPartialDiY() {
- return (cy.getEstimate() - py) / getCenterDistance();
- }
-
- public double getTheoreticalValue() {
- return getCenterDistance() - getRadius();
- }
-
- private double px;
- private double py;
- private static final long serialVersionUID = 1L;
-
- }
-
- private EstimatedParameter cx;
- private EstimatedParameter cy;
- private ArrayList points;
-
- }
-
- public static Test suite() {
- return new TestSuite(GaussNewtonEstimatorTest.class);
- }
-
-}
diff --git a/src/test/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java b/src/test/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java
new file mode 100644
index 000000000..92a62dc99
--- /dev/null
+++ b/src/test/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java
@@ -0,0 +1,573 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.optimization.general;
+
+import java.awt.geom.Point2D;
+import java.util.ArrayList;
+import java.util.Arrays;
+
+import junit.framework.Test;
+import junit.framework.TestCase;
+import junit.framework.TestSuite;
+
+import org.apache.commons.math.linear.DenseRealMatrix;
+import org.apache.commons.math.linear.RealMatrix;
+import org.apache.commons.math.optimization.ObjectiveException;
+import org.apache.commons.math.optimization.OptimizationException;
+import org.apache.commons.math.optimization.SimpleVectorialValueChecker;
+import org.apache.commons.math.optimization.VectorialDifferentiableObjectiveFunction;
+import org.apache.commons.math.optimization.VectorialPointValuePair;
+
+/**
+ * Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files.
+ * The redistribution policy for MINPACK is available here, for
+ * convenience, it is reproduced below.
+
+ *
+ *
+ * Minpack Copyright Notice (1999) University of Chicago.
+ * All rights reserved
+ * |
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * - Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ * - The end-user documentation included with the redistribution, if any,
+ * must include the following acknowledgment:
+ *
This product includes software developed by the University of
+ * Chicago, as Operator of Argonne National Laboratory.
+ * Alternately, this acknowledgment may appear in the software itself,
+ * if and wherever such third-party acknowledgments normally appear.
+ * - WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+ * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+ * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+ * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+ * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+ * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+ * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+ * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+ * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+ * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+ * BE CORRECTED.
+ * - LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+ * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+ * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+ * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+ * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+ * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+ * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+ * POSSIBILITY OF SUCH LOSS OR DAMAGES.
+ *
|
+ *
+
+ * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests)
+ * @author Burton S. Garbow (original fortran minpack tests)
+ * @author Kenneth E. Hillstrom (original fortran minpack tests)
+ * @author Jorge J. More (original fortran minpack tests)
+ * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation)
+ */
+public class GaussNewtonOptimizerTest
+extends TestCase {
+
+ public GaussNewtonOptimizerTest(String name) {
+ super(name);
+ }
+
+ public void testTrivial() throws ObjectiveException, OptimizationException {
+ LinearProblem problem =
+ new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1 }, new double[] { 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(1.5, optimum.getPoint()[0], 1.0e-10);
+ }
+
+ public void testColumnsPermutation() throws ObjectiveException, OptimizationException {
+
+ LinearProblem problem =
+ new LinearProblem(new double[][] { { 1.0, -1.0 }, { 0.0, 2.0 }, { 1.0, -2.0 } },
+ new double[] { 4.0, 6.0, 1.0 });
+
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(7.0, optimum.getPoint()[0], 1.0e-10);
+ assertEquals(3.0, optimum.getPoint()[1], 1.0e-10);
+
+ }
+
+ public void testNoDependency() throws ObjectiveException, OptimizationException {
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 2, 0, 0, 0, 0, 0 },
+ { 0, 2, 0, 0, 0, 0 },
+ { 0, 0, 2, 0, 0, 0 },
+ { 0, 0, 0, 2, 0, 0 },
+ { 0, 0, 0, 0, 2, 0 },
+ { 0, 0, 0, 0, 0, 2 }
+ }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1, 1 },
+ new double[] { 0, 0, 0, 0, 0, 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ for (int i = 0; i < problem.target.length; ++i) {
+ assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10);
+ }
+ }
+
+ public void testOneSet() throws ObjectiveException, OptimizationException {
+
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 1, 0, 0 },
+ { -1, 1, 0 },
+ { 0, -1, 1 }
+ }, new double[] { 1, 1, 1});
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(1.0, optimum.getPoint()[0], 1.0e-10);
+ assertEquals(2.0, optimum.getPoint()[1], 1.0e-10);
+ assertEquals(3.0, optimum.getPoint()[2], 1.0e-10);
+
+ }
+
+ public void testTwoSets() throws ObjectiveException, OptimizationException {
+ double epsilon = 1.0e-7;
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 2, 1, 0, 4, 0, 0 },
+ { -4, -2, 3, -7, 0, 0 },
+ { 4, 1, -2, 8, 0, 0 },
+ { 0, -3, -12, -1, 0, 0 },
+ { 0, 0, 0, 0, epsilon, 1 },
+ { 0, 0, 0, 0, 1, 1 }
+ }, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2});
+
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1, 1 },
+ new double[] { 0, 0, 0, 0, 0, 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals( 3.0, optimum.getPoint()[0], 1.0e-10);
+ assertEquals( 4.0, optimum.getPoint()[1], 1.0e-10);
+ assertEquals(-1.0, optimum.getPoint()[2], 1.0e-10);
+ assertEquals(-2.0, optimum.getPoint()[3], 1.0e-10);
+ assertEquals( 1.0 + epsilon, optimum.getPoint()[4], 1.0e-10);
+ assertEquals( 1.0 - epsilon, optimum.getPoint()[5], 1.0e-10);
+
+ }
+
+ public void testNonInversible() throws OptimizationException {
+
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 1, 2, -3 },
+ { 2, 1, 3 },
+ { -3, 0, -9 }
+ }, new double[] { 1, 1, 1 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ try {
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 });
+ fail("an exception should have been caught");
+ } catch (OptimizationException ee) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception type caught");
+ }
+ }
+
+ public void testIllConditioned() throws ObjectiveException, OptimizationException {
+ LinearProblem problem1 = new LinearProblem(new double[][] {
+ { 10.0, 7.0, 8.0, 7.0 },
+ { 7.0, 5.0, 6.0, 5.0 },
+ { 8.0, 6.0, 10.0, 9.0 },
+ { 7.0, 5.0, 9.0, 10.0 }
+ }, new double[] { 32, 23, 33, 31 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum1 =
+ optimizer.optimize(problem1, problem1.target, new double[] { 1, 1, 1, 1 },
+ new double[] { 0, 1, 2, 3 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(1.0, optimum1.getPoint()[0], 1.0e-10);
+ assertEquals(1.0, optimum1.getPoint()[1], 1.0e-10);
+ assertEquals(1.0, optimum1.getPoint()[2], 1.0e-10);
+ assertEquals(1.0, optimum1.getPoint()[3], 1.0e-10);
+
+ LinearProblem problem2 = new LinearProblem(new double[][] {
+ { 10.00, 7.00, 8.10, 7.20 },
+ { 7.08, 5.04, 6.00, 5.00 },
+ { 8.00, 5.98, 9.89, 9.00 },
+ { 6.99, 4.99, 9.00, 9.98 }
+ }, new double[] { 32, 23, 33, 31 });
+ VectorialPointValuePair optimum2 =
+ optimizer.optimize(problem2, problem2.target, new double[] { 1, 1, 1, 1 },
+ new double[] { 0, 1, 2, 3 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(-81.0, optimum2.getPoint()[0], 1.0e-8);
+ assertEquals(137.0, optimum2.getPoint()[1], 1.0e-8);
+ assertEquals(-34.0, optimum2.getPoint()[2], 1.0e-8);
+ assertEquals( 22.0, optimum2.getPoint()[3], 1.0e-8);
+
+ }
+
+ public void testMoreEstimatedParametersSimple() throws OptimizationException {
+
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 3.0, 2.0, 0.0, 0.0 },
+ { 0.0, 1.0, -1.0, 1.0 },
+ { 2.0, 0.0, 1.0, 0.0 }
+ }, new double[] { 7.0, 3.0, 5.0 });
+
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ try {
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 },
+ new double[] { 7, 6, 5, 4 });
+ fail("an exception should have been caught");
+ } catch (OptimizationException ee) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception type caught");
+ }
+
+ }
+
+ public void testMoreEstimatedParametersUnsorted() throws OptimizationException {
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 },
+ { 0.0, 0.0, 1.0, 1.0, 1.0, 0.0 },
+ { 0.0, 0.0, 0.0, 0.0, 1.0, -1.0 },
+ { 0.0, 0.0, -1.0, 1.0, 0.0, 1.0 },
+ { 0.0, 0.0, 0.0, -1.0, 1.0, 0.0 }
+ }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ try {
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1, 1, 1 },
+ new double[] { 2, 2, 2, 2, 2, 2 });
+ fail("an exception should have been caught");
+ } catch (OptimizationException ee) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception type caught");
+ }
+ }
+
+ public void testRedundantEquations() throws ObjectiveException, OptimizationException {
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 1.0, 1.0 },
+ { 1.0, -1.0 },
+ { 1.0, 3.0 }
+ }, new double[] { 3.0, 1.0, 5.0 });
+
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 },
+ new double[] { 1, 1 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(2.0, optimum.getPoint()[0], 1.0e-8);
+ assertEquals(1.0, optimum.getPoint()[1], 1.0e-8);
+
+ }
+
+ public void testInconsistentEquations() throws ObjectiveException, OptimizationException {
+ LinearProblem problem = new LinearProblem(new double[][] {
+ { 1.0, 1.0 },
+ { 1.0, -1.0 },
+ { 1.0, 3.0 }
+ }, new double[] { 3.0, 1.0, 4.0 });
+
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 1, 1 });
+ assertTrue(optimizer.getRMS() > 0.1);
+
+ }
+
+ public void testInconsistentSizes() throws ObjectiveException, OptimizationException {
+ LinearProblem problem =
+ new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new double[] { -1, 1 });
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+
+ VectorialPointValuePair optimum =
+ optimizer.optimize(problem, problem.target, new double[] { 1, 1 }, new double[] { 0, 0 });
+ assertEquals(0, optimizer.getRMS(), 1.0e-10);
+ assertEquals(-1, optimum.getPoint()[0], 1.0e-10);
+ assertEquals(+1, optimum.getPoint()[1], 1.0e-10);
+
+ try {
+ optimizer.optimize(problem, problem.target,
+ new double[] { 1 },
+ new double[] { 0, 0 });
+ fail("an exception should have been thrown");
+ } catch (OptimizationException oe) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception caught");
+ }
+
+ try {
+ optimizer.optimize(problem, new double[] { 1 },
+ new double[] { 1 },
+ new double[] { 0, 0 });
+ fail("an exception should have been thrown");
+ } catch (ObjectiveException oe) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception caught");
+ }
+
+ }
+
+ public void testMaxIterations() {
+ Circle circle = new Circle();
+ circle.addPoint( 30.0, 68.0);
+ circle.addPoint( 50.0, -6.0);
+ circle.addPoint(110.0, -20.0);
+ circle.addPoint( 35.0, 15.0);
+ circle.addPoint( 45.0, 97.0);
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-15, 1.0e-15));
+ try {
+ optimizer.optimize(circle, new double[] { 0, 0, 0, 0, 0 },
+ new double[] { 1, 1, 1, 1, 1 },
+ new double[] { 98.680, 47.345 });
+ fail("an exception should have been caught");
+ } catch (OptimizationException ee) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception type caught");
+ }
+ }
+
+ public void testCircleFitting() throws ObjectiveException, OptimizationException {
+ Circle circle = new Circle();
+ circle.addPoint( 30.0, 68.0);
+ circle.addPoint( 50.0, -6.0);
+ circle.addPoint(110.0, -20.0);
+ circle.addPoint( 35.0, 15.0);
+ circle.addPoint( 45.0, 97.0);
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-13, 1.0e-13));
+ VectorialPointValuePair optimum =
+ optimizer.optimize(circle, new double[] { 0, 0, 0, 0, 0 },
+ new double[] { 1, 1, 1, 1, 1 },
+ new double[] { 98.680, 47.345 });
+ assertEquals(1.768262623567235, Math.sqrt(circle.getN()) * optimizer.getRMS(), 1.0e-10);
+ Point2D.Double center = new Point2D.Double(optimum.getPointRef()[0], optimum.getPointRef()[1]);
+ assertEquals(69.96016175359975, circle.getRadius(center), 1.0e-10);
+ assertEquals(96.07590209601095, center.x, 1.0e-10);
+ assertEquals(48.135167894714, center.y, 1.0e-10);
+ }
+
+ public void testCircleFittingBadInit() throws ObjectiveException, OptimizationException {
+ Circle circle = new Circle();
+ double[][] points = new double[][] {
+ {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724},
+ {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619},
+ {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832},
+ {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235},
+ { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201},
+ { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718},
+ {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862},
+ {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526},
+ {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398},
+ {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513},
+ {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737},
+ { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850},
+ { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138},
+ {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578},
+ {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926},
+ {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068},
+ {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119},
+ {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560},
+ { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807},
+ { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174},
+ { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635},
+ {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251},
+ {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597},
+ {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428},
+ {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380},
+ {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077},
+ { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681},
+ { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022},
+ {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526}
+ };
+ double[] target = new double[points.length];
+ Arrays.fill(target, 0.0);
+ double[] weights = new double[points.length];
+ Arrays.fill(weights, 2.0);
+ for (int i = 0; i < points.length; ++i) {
+ circle.addPoint(points[i][0], points[i][1]);
+ }
+ GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+ optimizer.setMaxEvaluations(100);
+ optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+ try {
+ optimizer.optimize(circle, target, weights, new double[] { -12, -12 });
+ fail("an exception should have been caught");
+ } catch (OptimizationException ee) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception type caught");
+ }
+
+ VectorialPointValuePair optimum =
+ optimizer.optimize(circle, target, weights, new double[] { 0, 0 });
+ assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 1.0e-8);
+ assertEquals(0.2074999736353867, optimum.getPointRef()[1], 1.0e-8);
+ assertEquals(0.04268731682389561, optimizer.getRMS(), 1.0e-8);
+
+ }
+
+ private static class LinearProblem implements VectorialDifferentiableObjectiveFunction {
+
+ private static final long serialVersionUID = 703247177355019415L;
+ final RealMatrix factors;
+ final double[] target;
+ public LinearProblem(double[][] factors, double[] target) {
+ this.factors = new DenseRealMatrix(factors);
+ this.target = target;
+ }
+
+ public double[][] jacobian(double[] variables, double[] value) {
+ return factors.getData();
+ }
+
+ public double[] objective(double[] variables) {
+ return factors.operate(variables);
+ }
+
+ }
+
+ private static class Circle implements VectorialDifferentiableObjectiveFunction {
+
+ private static final long serialVersionUID = -4711170319243817874L;
+
+ private ArrayList points;
+
+ public Circle() {
+ points = new ArrayList();
+ }
+
+ public void addPoint(double px, double py) {
+ points.add(new Point2D.Double(px, py));
+ }
+
+ public int getN() {
+ return points.size();
+ }
+
+ public double getRadius(Point2D.Double center) {
+ double r = 0;
+ for (Point2D.Double point : points) {
+ r += point.distance(center);
+ }
+ return r / points.size();
+ }
+
+ public double[][] jacobian(double[] variables, double[] value)
+ throws ObjectiveException, IllegalArgumentException {
+
+ int n = points.size();
+ Point2D.Double center = new Point2D.Double(variables[0], variables[1]);
+
+ // gradient of the optimal radius
+ double dRdX = 0;
+ double dRdY = 0;
+ for (Point2D.Double pk : points) {
+ double dk = pk.distance(center);
+ dRdX += (center.x - pk.x) / dk;
+ dRdY += (center.y - pk.y) / dk;
+ }
+ dRdX /= n;
+ dRdY /= n;
+
+ // jacobian of the radius residuals
+ double[][] jacobian = new double[n][2];
+ for (int i = 0; i < n; ++i) {
+ Point2D.Double pi = points.get(i);
+ double di = pi.distance(center);
+ jacobian[i][0] = (center.x - pi.x) / di - dRdX;
+ jacobian[i][1] = (center.y - pi.y) / di - dRdY;
+ }
+
+ return jacobian;
+
+ }
+
+ public double[] objective(double[] variables)
+ throws ObjectiveException, IllegalArgumentException {
+
+ Point2D.Double center = new Point2D.Double(variables[0], variables[1]);
+ double radius = getRadius(center);
+
+ double[] residuals = new double[points.size()];
+ for (int i = 0; i < residuals.length; ++i) {
+ residuals[i] = points.get(i).distance(center) - radius;
+ }
+
+ return residuals;
+
+ }
+
+ }
+
+ public static Test suite() {
+ return new TestSuite(GaussNewtonOptimizerTest.class);
+ }
+
+}