> clusters);
+
+ /**
+ * Returns whether the first evaluation score is considered to be better
+ * than the second one by this evaluator.
+ *
+ * Specific implementations shall override this method if the returned scores
+ * do not follow the same ordering, i.e. smaller score is better.
+ *
+ * @param score1 the first score
+ * @param score2 the second score
+ * @return {@code true} if the first score is considered to be better, {@code false} otherwise
+ */
+ public boolean isBetterScore(double score1, double score2) {
+ return score1 < score2;
+ }
+
+ /**
+ * Calculates the distance between two {@link Clusterable} instances
+ * with the configured {@link DistanceMeasure}.
+ *
+ * @param p1 the first clusterable
+ * @param p2 the second clusterable
+ * @return the distance between the two clusterables
+ */
+ protected double distance(final Clusterable p1, final Clusterable p2) {
+ return measure.compute(p1.getPoint(), p2.getPoint());
+ }
+
+ /**
+ * Computes the centroid for a cluster.
+ *
+ * @param cluster the cluster
+ * @return the computed centroid for the cluster,
+ * or {@code null} if the cluster does not contain any points
+ */
+ protected Clusterable centroidOf(final Cluster cluster) {
+ final List points = cluster.getPoints();
+ if (points.isEmpty()) {
+ return null;
+ }
+
+ // in case the cluster is of type CentroidCluster, no need to compute the centroid
+ if (cluster instanceof CentroidCluster) {
+ return ((CentroidCluster) cluster).getCenter();
+ }
+
+ final int dimension = points.get(0).getPoint().length;
+ final double[] centroid = new double[dimension];
+ for (final T p : points) {
+ final double[] point = p.getPoint();
+ for (int i = 0; i < centroid.length; i++) {
+ centroid[i] += point[i];
+ }
+ }
+ for (int i = 0; i < centroid.length; i++) {
+ centroid[i] /= points.size();
+ }
+ return new DoublePoint(centroid);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariances.java b/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariances.java
new file mode 100644
index 000000000..4dc648e5f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariances.java
@@ -0,0 +1,69 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ml.clustering.evaluation;
+
+import java.util.List;
+
+import org.apache.commons.math3.ml.clustering.Cluster;
+import org.apache.commons.math3.ml.clustering.Clusterable;
+import org.apache.commons.math3.ml.distance.DistanceMeasure;
+import org.apache.commons.math3.stat.descriptive.moment.Variance;
+
+/**
+ * Computes the sum of intra-cluster distance variances according to the formula:
+ *
+ * \( score = \sum\limits_{i=1}^n \sigma_i^2 \)
+ *
+ * where n is the number of clusters and \( \sigma_i^2 \) is the variance of
+ * intra-cluster distances of cluster \( c_i \).
+ *
+ * @param the type of the clustered points
+ * @version $Id$
+ * @since 3.3
+ */
+public class SumOfClusterVariances extends ClusterEvaluator {
+
+ /**
+ *
+ * @param measure the distance measure to use
+ */
+ public SumOfClusterVariances(final DistanceMeasure measure) {
+ super(measure);
+ }
+
+ @Override
+ public double score(final List extends Cluster> clusters) {
+ double varianceSum = 0.0;
+ for (final Cluster cluster : clusters) {
+ if (!cluster.getPoints().isEmpty()) {
+
+ final Clusterable center = centroidOf(cluster);
+
+ // compute the distance variance of the current cluster
+ final Variance stat = new Variance();
+ for (final T point : cluster.getPoints()) {
+ stat.increment(distance(point, center));
+ }
+ varianceSum += stat.getResult();
+
+ }
+ }
+ return varianceSum;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/package-info.java b/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/package-info.java
new file mode 100644
index 000000000..700f56602
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ml/clustering/evaluation/package-info.java
@@ -0,0 +1,20 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ * Cluster evaluation methods.
+ */
+package org.apache.commons.math3.ml.clustering.evaluation;
diff --git a/src/test/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariancesTest.java b/src/test/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariancesTest.java
new file mode 100644
index 000000000..a92256d9a
--- /dev/null
+++ b/src/test/java/org/apache/commons/math3/ml/clustering/evaluation/SumOfClusterVariancesTest.java
@@ -0,0 +1,80 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ml.clustering.evaluation;
+
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.assertFalse;
+import static org.junit.Assert.assertTrue;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.ml.clustering.Cluster;
+import org.apache.commons.math3.ml.clustering.DoublePoint;
+import org.apache.commons.math3.ml.distance.EuclideanDistance;
+import org.junit.Before;
+import org.junit.Test;
+
+public class SumOfClusterVariancesTest {
+
+ private ClusterEvaluator evaluator;
+
+ @Before
+ public void setUp() {
+ evaluator = new SumOfClusterVariances(new EuclideanDistance());
+ }
+
+ @Test
+ public void testScore() {
+ final DoublePoint[] points1 = new DoublePoint[] {
+ new DoublePoint(new double[] { 1 }),
+ new DoublePoint(new double[] { 2 }),
+ new DoublePoint(new double[] { 3 })
+ };
+
+ final DoublePoint[] points2 = new DoublePoint[] {
+ new DoublePoint(new double[] { 1 }),
+ new DoublePoint(new double[] { 5 }),
+ new DoublePoint(new double[] { 10 })
+ };
+
+ final List> clusters = new ArrayList>();
+
+ final Cluster cluster1 = new Cluster();
+ for (DoublePoint p : points1) {
+ cluster1.addPoint(p);
+ }
+ clusters.add(cluster1);
+
+ assertEquals(1.0/3.0, evaluator.score(clusters), 1e-6);
+
+ final Cluster cluster2 = new Cluster();
+ for (DoublePoint p : points2) {
+ cluster2.addPoint(p);
+ }
+ clusters.add(cluster2);
+
+ assertEquals(6.148148148, evaluator.score(clusters), 1e-6);
+ }
+
+ @Test
+ public void testOrdering() {
+ assertTrue(evaluator.isBetterScore(10, 20));
+ assertFalse(evaluator.isBetterScore(20, 1));
+ }
+}