MATH-1443: Depend on "Commons Statistics".

This commit is contained in:
Gilles 2018-01-24 16:16:00 +01:00
parent 6d9bc1ade0
commit 3c0c9d83e2
3 changed files with 13 additions and 7 deletions

View File

@ -365,6 +365,12 @@
</contributors>
<dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-statistics-distribution</artifactId>
<version>0.1-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-numbers-core</artifactId>

View File

@ -19,8 +19,8 @@ package org.apache.commons.math4.ml.neuralnet;
import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.analysis.function.Constant;
import org.apache.commons.math4.distribution.RealDistribution;
import org.apache.commons.math4.distribution.UniformRealDistribution;
import org.apache.commons.statistics.distribution.ContinuousDistribution;
import org.apache.commons.statistics.distribution.UniformContinuousDistribution;
import org.apache.commons.rng.simple.RandomSource;
import org.apache.commons.rng.UniformRandomProvider;
@ -49,7 +49,7 @@ public class FeatureInitializerFactory {
public static FeatureInitializer uniform(final UniformRandomProvider rng,
final double min,
final double max) {
return randomize(new UniformRealDistribution(min, max).createSampler(rng),
return randomize(new UniformContinuousDistribution(min, max).createSampler(rng),
function(new Constant(0), 0, 0));
}
@ -103,7 +103,7 @@ public class FeatureInitializerFactory {
* @return an initializer whose {@link FeatureInitializer#value() value}
* method will return {@code orig.value() + random.sample()}.
*/
public static FeatureInitializer randomize(final RealDistribution.Sampler random,
public static FeatureInitializer randomize(final ContinuousDistribution.Sampler random,
final FeatureInitializer orig) {
return new FeatureInitializer() {
/** {@inheritDoc} */

View File

@ -28,8 +28,8 @@ import org.apache.commons.math4.analysis.FunctionUtils;
import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.analysis.function.Constant;
import org.apache.commons.math4.analysis.function.HarmonicOscillator;
import org.apache.commons.math4.distribution.RealDistribution;
import org.apache.commons.math4.distribution.UniformRealDistribution;
import org.apache.commons.statistics.distribution.ContinuousDistribution;
import org.apache.commons.statistics.distribution.UniformContinuousDistribution;
import org.apache.commons.math4.exception.MathUnsupportedOperationException;
import org.apache.commons.math4.ml.distance.DistanceMeasure;
import org.apache.commons.math4.ml.distance.EuclideanDistance;
@ -341,7 +341,7 @@ public class TravellingSalesmanSolver {
final UnivariateFunction f1 = FunctionUtils.add(h1, new Constant(centre[0]));
final UnivariateFunction f2 = FunctionUtils.add(h2, new Constant(centre[1]));
final RealDistribution u = new UniformRealDistribution(-0.05 * radius, 0.05 * radius);
final ContinuousDistribution u = new UniformContinuousDistribution(-0.05 * radius, 0.05 * radius);
return new FeatureInitializer[] {
FeatureInitializerFactory.randomize(u.createSampler(random),