MATH-1458: Added JUnit tests to document failure

This commit is contained in:
aherbert 2018-05-08 10:46:05 +01:00
parent f43069ac6d
commit 3cce9ed6c3
1 changed files with 265 additions and 1 deletions

View File

@ -18,6 +18,8 @@ package org.apache.commons.math4.analysis.integration;
import org.apache.commons.math4.analysis.QuinticFunction;
import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.analysis.function.Identity;
import org.apache.commons.math4.analysis.function.Inverse;
import org.apache.commons.math4.analysis.function.Sin;
import org.apache.commons.math4.analysis.integration.SimpsonIntegrator;
import org.apache.commons.math4.analysis.integration.UnivariateIntegrator;
@ -114,10 +116,272 @@ public final class SimpsonIntegratorTest {
}
try {
// bad iteration limits
new SimpsonIntegrator(10, 99);
new SimpsonIntegrator(10, SimpsonIntegrator.SIMPSON_MAX_ITERATIONS_COUNT + 1);
Assert.fail("Expecting NumberIsTooLargeException - bad iteration limits");
} catch (NumberIsTooLargeException ex) {
// expected
}
}
// Tests for MATH-1458:
// The SimpsonIntegrator had the following bugs:
// - minimalIterationCount==1 results in no possible iteration
// - minimalIterationCount==1 computes incorrect Simpson sum (following no iteration)
// - minimalIterationCount>1 computes the first iteration sum as the Trapezoid sum
// - minimalIterationCount>1 computes the second iteration sum as the first Simpson sum
/**
* Test iteration is possible when minimalIterationCount==1.
* <br/>
* MATH-1458: No iterations were performed when minimalIterationCount==1.
*/
@Test
public void testIterationIsPossibleWhenMinimalIterationCountIs1() {
UnivariateFunction f = new Sin();
UnivariateIntegrator integrator = new SimpsonIntegrator(1,
SimpsonIntegrator.SIMPSON_MAX_ITERATIONS_COUNT);
// The range or result is not relevant.
// This sum should not converge at 1 iteration.
// This tests iteration occurred.
integrator.integrate(1000, f, 0, 1);
// MATH-1458: No iterations were performed when minimalIterationCount==1
Assert.assertTrue("Iteration is not above 1",
integrator.getIterations() > 1);
}
/**
* Test convergence at iteration 1 when minimalIterationCount==1.
* <br/>
* MATH-1458: No iterations were performed when minimalIterationCount==1.
*/
@Test
public void testConvergenceIsPossibleAtIteration1() {
// A linear function y=x should converge immediately
UnivariateFunction f = new Identity();
UnivariateIntegrator integrator = new SimpsonIntegrator(1,
SimpsonIntegrator.SIMPSON_MAX_ITERATIONS_COUNT);
double min, max, expected, result, tolerance;
min = 0; max = 1; expected = 0.5;
tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(1000, f, min, max);
// MATH-1458: No iterations were performed when minimalIterationCount==1
Assert.assertTrue("Iteration is not above 0",
integrator.getIterations() > 0);
// This should converge immediately
Assert.assertEquals("Iteration", integrator.getIterations(), 1);
Assert.assertEquals("Result", expected, result, tolerance);
}
/**
* Compute the integral using the composite Simpson's rule.
*
* @param f the function
* @param a the lower limit
* @param b the upper limit
* @param n the number of intervals (must be even)
* @return the integral between a and b
* @see <a href="https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule">
* Composite_Simpson's_rule</a>
*/
private static double compositeSimpsonsRule(UnivariateFunction f, double a,
double b, int n)
{
// Sum interval [a,b] split into n subintervals, with n an even number:
// sum ~ h/3 * [ f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) ... + 4f(xn-1) + f(xn) ]
// h = (b-a)/n
// f(xi) = f(a + i*h)
assert n > 0 && n % 2 == 0 : "n must be strictly positive and even";
final double h = (b - a) / n;
double sum4 = 0;
double sum2 = 0;
for (int i = 1; i < n; i++) {
// Alternate sums that are multiplied by 4 and 2
final double fxi = f.value(a + i * h);
if (i % 2 == 0)
sum2 += fxi;
else
sum4 += fxi;
}
return (h / 3) * (f.value(a) + 4 * sum4 + 2 * sum2 + f.value(b));
}
/**
* Compute the iteration of Simpson's rule.
*
* @param f the function
* @param a the lower limit
* @param b the upper limit
* @param iteration the refinement iteration
* @return the integral between a and b
*/
private static double computeSimpsonIteration(UnivariateFunction f, double a,
double b, int iteration)
{
// The first possible Simpson's sum uses n=2.
// The next uses n=4. This is the 1st refinement expected when the
// integrator has performed 1 iteration.
final int n = 2 << iteration;
return compositeSimpsonsRule(f, a, b, n);
}
/**
* Test the reference Simpson integration is doing what is expected
*/
@Test
public void testReferenceSimpsonItegrationIsCorrect() {
UnivariateFunction f = new Sin();
double a, b, h, expected, result, tolerance;
a = 0.5;
b = 1;
double b_a = b - a;
// First Simpson sum. 1 midpoint evaluation:
h = b_a / 2;
double f00 = f.value(a);
double f01 = f.value(a + 1 * h);
double f0n = f.value(b);
expected = (b_a / 6) * (f00 + 4 * f01 + f0n);
tolerance = FastMath.abs(expected * SimpsonIntegrator.DEFAULT_RELATIVE_ACCURACY);
result = computeSimpsonIteration(f, a, b, 0);
Assert.assertEquals("Result", expected, result, tolerance);
// Second Simpson sum: 2 more evaluations:
h = b_a / 4;
double f11 = f.value(a + 1 * h);
double f13 = f.value(a + 3 * h);
expected = (h / 3) * (f00 + 4 * f11 + 2 * f01 + 4 * f13 + f0n);
tolerance = FastMath.abs(expected * SimpsonIntegrator.DEFAULT_RELATIVE_ACCURACY);
result = computeSimpsonIteration(f, a, b, 1);
Assert.assertEquals("Result", expected, result, tolerance);
// Third Simpson sum: 4 more evaluations:
h = b_a / 8;
double f21 = f.value(a + 1 * h);
double f23 = f.value(a + 3 * h);
double f25 = f.value(a + 5 * h);
double f27 = f.value(a + 7 * h);
expected = (h / 3) * (f00 + 4 * f21 + 2 * f11 + 4 * f23 + 2 * f01 + 4 * f25 +
2 * f13 + 4 * f27 + f0n);
tolerance = FastMath.abs(expected * SimpsonIntegrator.DEFAULT_RELATIVE_ACCURACY);
result = computeSimpsonIteration(f, a, b, 2);
Assert.assertEquals("Result", expected, result, tolerance);
}
/**
* Test iteration 1 returns the expected sum when minimalIterationCount==1.
* <br/>
* MATH-1458: minimalIterationCount==1 computes incorrect Simpson sum
* (following no iteration).
*/
@Test
public void testIteration1ComputesTheExpectedSimpsonSum() {
UnivariateFunction f = new Sin();
// Set convergence criteria to force immediate convergence
UnivariateIntegrator integrator = new SimpsonIntegrator(
0, Double.POSITIVE_INFINITY,
1, SimpsonIntegrator.SIMPSON_MAX_ITERATIONS_COUNT);
double min, max, expected, result, tolerance;
// MATH-1458: minimalIterationCount==1 computes incorrect
// Simpson sum (following no iteration)
min = 0;
max = 1;
result = integrator.integrate(1000, f, min, max);
// Immediate convergence
Assert.assertEquals("Iteration", 1, integrator.getIterations());
// Check the sum is as expected
expected = computeSimpsonIteration(f, min, max, 1);
tolerance = FastMath.abs(expected * SimpsonIntegrator.DEFAULT_RELATIVE_ACCURACY);
Assert.assertEquals("Result", expected, result, tolerance);
}
/**
* Test iteration N returns the expected sum when minimalIterationCount==1.
* <br/>
* MATH-1458: minimalIterationCount>1 computes the second iteration sum as
* the first Simpson sum.
*/
@Test
public void testIterationNComputesTheExpectedSimpsonSum() {
// Use 1/x as the function as the sum will asymptote in a monotonic
// series. The convergence can then be controlled.
UnivariateFunction f = new Inverse();
double min, max, expected, result, tolerance;
int minIteration, maxIteration;
// Range for integration
min = 1;
max = 2;
// This is the expected sum.
// Each iteration will monotonically converge to this.
expected = FastMath.log(max) - FastMath.log(min);
// Test convergence at the given iteration
minIteration = 2;
maxIteration = 4;
// Compute the sums expected for different iterations.
// Add an additional sum so that the test can compare to the next value.
double[] sums = new double[maxIteration + 2];
for (int i = 0; i < sums.length; i++) {
sums[i] = computeSimpsonIteration(f, min, max, i);
// Check monotonic
if (i > 0) {
Assert.assertTrue("Expected series not monotonic descending",
sums[i] < sums[i - 1]);
// Check monotonic difference
if (i > 1) {
Assert.assertTrue("Expected convergence not monotonic descending",
sums[i - 1] - sums[i] < sums[i - 2] - sums[i - 1]);
}
}
}
// Check the test function is correct.
tolerance = FastMath.abs(expected * SimpsonIntegrator.DEFAULT_RELATIVE_ACCURACY);
Assert.assertEquals("Expected result", expected, sums[maxIteration], tolerance);
// Set-up to test convergence at a specific iteration.
// Allow enough function evaluations.
// Iteration 0 = 3 evaluations
// Iteration 1 = 5 evaluations
// Iteration n = 2^(n+1)+1 evaluations
int evaluations = 2 << (maxIteration + 1) + 1;
for (int i = minIteration; i <= maxIteration; i++) {
// Create convergence criteria.
// (sum - previous) is monotonic descending.
// So use a point half-way between them:
// ((sums[i-1] - sums[i]) + (sums[i-2] - sums[i-1])) / 2
final double absoluteAccuracy = (sums[i - 2] - sums[i]) / 2;
// Use minimalIterationCount>1
UnivariateIntegrator integrator = new SimpsonIntegrator(
0, absoluteAccuracy,
2, SimpsonIntegrator.SIMPSON_MAX_ITERATIONS_COUNT);
result = integrator.integrate(evaluations, f, min, max);
// Check the iteration is as expected
Assert.assertEquals("Test failed to control iteration", i, integrator.getIterations());
// MATH-1458: minimalIterationCount>1 computes incorrect Simpson sum
// for the iteration. Check it is the correct sum.
// It should be closer to this one than the previous or next.
final double dp = FastMath.abs(sums[i-1] - result);
final double d = FastMath.abs(sums[i] - result);
final double dn = FastMath.abs(sums[i+1] - result);
Assert.assertTrue("Result closer to sum expected from previous iteration: " + i, d < dp);
Assert.assertTrue("Result closer to sum expected from next iteration: " + i, d < dn);
}
}
}