Use the new highly accurate linearCombination utility methods in 3D Euclidean geometry.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1154253 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2011-08-05 15:02:56 +00:00
parent 079e67738b
commit 3defe7345d
2 changed files with 106 additions and 54 deletions

View File

@ -132,9 +132,9 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
* @param u2 second base (unscaled) vector
*/
public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) {
this.x = a1 * u1.x + a2 * u2.x;
this.y = a1 * u1.y + a2 * u2.y;
this.z = a1 * u1.z + a2 * u2.z;
this.x = MathUtils.linearCombination(a1, u1.x, a2, u2.x);
this.y = MathUtils.linearCombination(a1, u1.y, a2, u2.y);
this.z = MathUtils.linearCombination(a1, u1.z, a2, u2.z);
}
/** Linear constructor
@ -149,9 +149,9 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
*/
public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
double a3, Vector3D u3) {
this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x;
this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y;
this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z;
this.x = MathUtils.linearCombination(a1, u1.x, a2, u2.x, a3, u3.x);
this.y = MathUtils.linearCombination(a1, u1.y, a2, u2.y, a3, u3.y);
this.z = MathUtils.linearCombination(a1, u1.z, a2, u2.z, a3, u3.z);
}
/** Linear constructor
@ -168,9 +168,9 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
*/
public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
double a3, Vector3D u3, double a4, Vector3D u4) {
this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x;
this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y;
this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z + a4 * u4.z;
this.x = MathUtils.linearCombination(a1, u1.x, a2, u2.x, a3, u3.x, a4, u4.x);
this.y = MathUtils.linearCombination(a1, u1.y, a2, u2.y, a3, u3.y, a4, u4.y);
this.z = MathUtils.linearCombination(a1, u1.z, a2, u2.z, a3, u3.z, a4, u4.z);
}
/** Get the abscissa of the vector.
@ -214,11 +214,13 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
/** {@inheritDoc} */
public double getNorm() {
// there are no cancellation problems here, so we use the straightforward formula
return FastMath.sqrt (x * x + y * y + z * z);
}
/** {@inheritDoc} */
public double getNormSq() {
// there are no cancellation problems here, so we use the straightforward formula
return x * x + y * y + z * z;
}
@ -251,8 +253,7 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
/** {@inheritDoc} */
public Vector3D add(double factor, final Vector<Euclidean3D> v) {
final Vector3D v3 = (Vector3D) v;
return new Vector3D(x + factor * v3.x, y + factor * v3.y, z + factor * v3.z);
return new Vector3D(1, this, factor, (Vector3D) v);
}
/** {@inheritDoc} */
@ -263,8 +264,7 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
/** {@inheritDoc} */
public Vector3D subtract(final double factor, final Vector<Euclidean3D> v) {
final Vector3D v3 = (Vector3D) v;
return new Vector3D(x - factor * v3.x, y - factor * v3.y, z - factor * v3.z);
return new Vector3D(1, this, -factor, (Vector3D) v);
}
/** {@inheritDoc} */
@ -328,7 +328,7 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
}
double dot = dotProduct(v1, v2);
double dot = v1.dotProduct(v2);
double threshold = normProduct * 0.9999;
if ((dot < -threshold) || (dot > threshold)) {
// the vectors are almost aligned, compute using the sine
@ -416,52 +416,28 @@ public class Vector3D implements Serializable, Vector<Euclidean3D> {
return 643 * (164 * MathUtils.hash(x) + 3 * MathUtils.hash(y) + MathUtils.hash(z));
}
/** {@inheritDoc} */
/** {@inheritDoc}
* <p>
* The implementation uses specific multiplication and addition
* algorithms to preserve accuracy and reduce cancellation effects.
* It should be very accurate even for nearly orthogonal vectors.
* </p>
* @see MathUtils#linearCombination(double, double, double, double, double, double)
*/
public double dotProduct(final Vector<Euclidean3D> v) {
final Vector3D v3 = (Vector3D) v;
return x * v3.x + y * v3.y + z * v3.z;
return MathUtils.linearCombination(x, v3.x, y, v3.y, z, v3.z);
}
/** Compute the cross-product of the instance with another vector.
* @param v other vectorvector
* @param v other vector
* @return the cross product this ^ v as a new Vector3D
*/
public Vector3D crossProduct(final Vector<Euclidean3D> v) {
final Vector3D v3 = (Vector3D) v;
final double n1 = getNormSq();
final double n2 = v.getNormSq();
if ((n1 * n2) < MathUtils.SAFE_MIN) {
return ZERO;
}
// rescale both vectors without losing precision,
// to ensure their norm are the same order of magnitude
final int deltaExp = (FastMath.getExponent(n1) - FastMath.getExponent(n2)) / 4;
final double x1 = FastMath.scalb(x, -deltaExp);
final double y1 = FastMath.scalb(y, -deltaExp);
final double z1 = FastMath.scalb(z, -deltaExp);
final double x2 = FastMath.scalb(v3.x, deltaExp);
final double y2 = FastMath.scalb(v3.y, deltaExp);
final double z2 = FastMath.scalb(v3.z, deltaExp);
// we reduce cancellation errors by preconditioning,
// we replace v1 by v3 = v1 - rho v2 with rho chosen in order to compute
// v3 without loss of precision. See Kahan lecture
// "Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces"
// available at http://www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf
// compute rho as an 8 bits approximation of v1.v2 / v2.v2
final double ratio = (x1 * x2 + y1 * y2 + z1 * z2) / FastMath.scalb(n2, 2 * deltaExp);
final double rho = FastMath.rint(256 * ratio) / 256;
final double x3 = x1 - rho * x2;
final double y3 = y1 - rho * y2;
final double z3 = z1 - rho * z2;
// compute cross product from v3 and v2 instead of v1 and v2
return new Vector3D(y3 * z2 - z3 * y2, z3 * x2 - x3 * z2, x3 * y2 - y3 * x2);
return new Vector3D(MathUtils.linearCombination(y, v3.z, -z, v3.y),
MathUtils.linearCombination(z, v3.x, -x, v3.z),
MathUtils.linearCombination(x, v3.y, -y, v3.x));
}
/** {@inheritDoc} */

View File

@ -17,10 +17,9 @@
package org.apache.commons.math.geometry.euclidean.threed;
import org.apache.commons.math.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math.util.FastMath;
import org.apache.commons.math.exception.MathArithmeticException;
import org.apache.commons.math.random.Well1024a;
import org.apache.commons.math.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
@ -236,6 +235,83 @@ public class Vector3DTest {
}
}
@Test
public void testAccurateDotProduct() {
// the following two vectors are nearly but not exactly orthogonal
// naive dot product (i.e. computing u1.x * u2.x + u1.y * u2.y + u1.z * u2.z
// leads to a result of 0.0, instead of the correct -1.855129...
Vector3D u1 = new Vector3D(-1321008684645961.0 / 268435456.0,
-5774608829631843.0 / 268435456.0,
-7645843051051357.0 / 8589934592.0);
Vector3D u2 = new Vector3D(-5712344449280879.0 / 2097152.0,
-4550117129121957.0 / 2097152.0,
8846951984510141.0 / 131072.0);
double sNaive = u1.getX() * u2.getX() + u1.getY() * u2.getY() + u1.getZ() * u2.getZ();
double sAccurate = u1.dotProduct(u2);
Assert.assertEquals(0.0, sNaive, 1.0e-30);
Assert.assertEquals(-2088690039198397.0 / 1125899906842624.0, sAccurate, 1.0e-16);
}
@Test
public void testDotProduct() {
// we compare accurate versus naive dot product implementations
// on regular vectors (i.e. not extreme cases like in the previous test)
Well1024a random = new Well1024a(553267312521321234l);
for (int i = 0; i < 10000; ++i) {
double ux = 10000 * random.nextDouble();
double uy = 10000 * random.nextDouble();
double uz = 10000 * random.nextDouble();
double vx = 10000 * random.nextDouble();
double vy = 10000 * random.nextDouble();
double vz = 10000 * random.nextDouble();
double sNaive = ux * vx + uy * vy + uz * vz;
double sAccurate = new Vector3D(ux, uy, uz).dotProduct(new Vector3D(vx, vy, vz));
Assert.assertEquals(sNaive, sAccurate, 2.5e-16 * sAccurate);
}
}
@Test
public void testAccurateCrossProduct() {
// the vectors u1 and u2 are nearly but not exactly anti-parallel
// (7.31e-16 degrees from 180 degrees) naive cross product (i.e.
// computing u1.x * u2.x + u1.y * u2.y + u1.z * u2.z
// leads to a result of [0.0009765, -0.0001220, -0.0039062],
// instead of the correct [0.0006913, -0.0001254, -0.0007909]
final Vector3D u1 = new Vector3D(-1321008684645961.0 / 268435456.0,
-5774608829631843.0 / 268435456.0,
-7645843051051357.0 / 8589934592.0);
final Vector3D u2 = new Vector3D( 1796571811118507.0 / 2147483648.0,
7853468008299307.0 / 2147483648.0,
2599586637357461.0 / 17179869184.0);
final Vector3D u3 = new Vector3D(12753243807587107.0 / 18446744073709551616.0,
-2313766922703915.0 / 18446744073709551616.0,
-227970081415313.0 / 288230376151711744.0);
Vector3D cNaive = new Vector3D(u1.getY() * u2.getZ() - u1.getZ() * u2.getY(),
u1.getZ() * u2.getX() - u1.getX() * u2.getZ(),
u1.getX() * u2.getY() - u1.getY() * u2.getX());
Vector3D cAccurate = u1.crossProduct(u2);
Assert.assertTrue(u3.distance(cNaive) > 2.9 * u3.getNorm());
Assert.assertEquals(0.0, u3.distance(cAccurate), 1.0e-30 * cAccurate.getNorm());
}
@Test
public void testCrossProduct() {
// we compare accurate versus naive cross product implementations
// on regular vectors (i.e. not extreme cases like in the previous test)
Well1024a random = new Well1024a(885362227452043214l);
for (int i = 0; i < 10000; ++i) {
double ux = 10000 * random.nextDouble();
double uy = 10000 * random.nextDouble();
double uz = 10000 * random.nextDouble();
double vx = 10000 * random.nextDouble();
double vy = 10000 * random.nextDouble();
double vz = 10000 * random.nextDouble();
Vector3D cNaive = new Vector3D(uy * vz - uz * vy, uz * vx - ux * vz, ux * vy - uy * vx);
Vector3D cAccurate = new Vector3D(ux, uy, uz).crossProduct(new Vector3D(vx, vy, vz));
Assert.assertEquals(0.0, cAccurate.distance(cNaive), 6.0e-15 * cAccurate.getNorm());
}
}
private void checkVector(Vector3D v, double x, double y, double z) {
Assert.assertEquals(x, v.getX(), 1.0e-12);
Assert.assertEquals(y, v.getY(), 1.0e-12);