Added some info on sampling.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1597357 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
17bac30082
commit
3e0f532e18
|
@ -28,7 +28,16 @@
|
||||||
<subsection name="8.1 Overview" href="overview">
|
<subsection name="8.1 Overview" href="overview">
|
||||||
<p>
|
<p>
|
||||||
The distributions package provides a framework and implementations for some commonly used
|
The distributions package provides a framework and implementations for some commonly used
|
||||||
probability distributions.
|
probability distributions. Continuous univariate distributions are represented by implementations of
|
||||||
|
the <a href="../apidocs/org/apache/commons/math3/distribution/RealDistribution.html">RealDistribution</a>
|
||||||
|
interface. Discrete distributions implement
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/distribution/IntegerDistribution.html">IntegerDistribution</a>
|
||||||
|
(values must be mapped to integers) and there is an
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/distribution/EnumeratedDistribution.html">EnumeratedDistribution</a>
|
||||||
|
class representing discrete distributions with a finite, enumerated set of values. Finally, multivariate
|
||||||
|
real-valued distributions can be represented via the
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/distribution/MultiVariateRealDistribution.html">MultivariateRealDistribution</a>
|
||||||
|
interface.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
An overview of available continuous distributions:<br/>
|
An overview of available continuous distributions:<br/>
|
||||||
|
@ -42,7 +51,8 @@
|
||||||
(<code>probability(·)</code>) and distribution functions
|
(<code>probability(·)</code>) and distribution functions
|
||||||
(<code>cumulativeProbability(·)</code>) for both
|
(<code>cumulativeProbability(·)</code>) for both
|
||||||
discrete (integer-valued) and continuous probability distributions.
|
discrete (integer-valued) and continuous probability distributions.
|
||||||
The framework also allows for the computation of inverse cumulative probabilities.
|
The framework also allows for the computation of inverse cumulative probabilities
|
||||||
|
and sampling from distributions.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
For an instance <code>f</code> of a distribution <code>F</code>,
|
For an instance <code>f</code> of a distribution <code>F</code>,
|
||||||
|
@ -62,6 +72,14 @@
|
||||||
<source>TDistribution t = new TDistribution(29);
|
<source>TDistribution t = new TDistribution(29);
|
||||||
double lowerTail = t.cumulativeProbability(-2.656); // P(T(29) <= -2.656)
|
double lowerTail = t.cumulativeProbability(-2.656); // P(T(29) <= -2.656)
|
||||||
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T(29) >= 2.75)</source>
|
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T(29) >= 2.75)</source>
|
||||||
|
<p>
|
||||||
|
All distributions implement a <code>sample()</code> method to support random sampling from the
|
||||||
|
distribution. Implementation classes expose constructors allowing the default
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/random/RandomGenerator.html">RandomGenerator</a>
|
||||||
|
used by the sampling algorithm to be overridden. If sampling is not going to be used, providing
|
||||||
|
a null <code>RandomGenerator</code> constructor argument will avoid the overhead of initializing
|
||||||
|
the default generator.
|
||||||
|
</p>
|
||||||
<p>
|
<p>
|
||||||
Inverse distribution functions can be computed using the
|
Inverse distribution functions can be computed using the
|
||||||
<code>inverseCumulativeProbability</code> methods. For continuous <code>f</code>
|
<code>inverseCumulativeProbability</code> methods. For continuous <code>f</code>
|
||||||
|
|
Loading…
Reference in New Issue