Made assumption about precomputed mean explicit in javadoc. Added missing method.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141437 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
45fe7d2981
commit
3f5862a60e
|
@ -30,7 +30,7 @@ import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatis
|
||||||
* one of the threads invokes the <code>increment()</code> or
|
* one of the threads invokes the <code>increment()</code> or
|
||||||
* <code>clear()</code> method, it must be synchronized externally.
|
* <code>clear()</code> method, it must be synchronized externally.
|
||||||
*
|
*
|
||||||
* @version $Revision: 1.22 $ $Date: 2004/07/18 04:42:02 $
|
* @version $Revision: 1.23 $ $Date: 2004/09/01 15:54:39 $
|
||||||
*/
|
*/
|
||||||
public class StandardDeviation extends AbstractStorelessUnivariateStatistic
|
public class StandardDeviation extends AbstractStorelessUnivariateStatistic
|
||||||
implements Serializable {
|
implements Serializable {
|
||||||
|
@ -133,6 +133,11 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
|
||||||
* <p>
|
* <p>
|
||||||
* Returns 0 for a single-value (i.e. length = 1) sample.
|
* Returns 0 for a single-value (i.e. length = 1) sample.
|
||||||
* <p>
|
* <p>
|
||||||
|
* The formula used assumes that the supplied mean value is the arithmetic
|
||||||
|
* mean of the sample data, not a known population parameter. This method
|
||||||
|
* is supplied only to save computation when the mean has already been
|
||||||
|
* computed.
|
||||||
|
* <p>
|
||||||
* Throws <code>IllegalArgumentException</code> if the array is null.
|
* Throws <code>IllegalArgumentException</code> if the array is null.
|
||||||
* <p>
|
* <p>
|
||||||
* Does not change the internal state of the statistic.
|
* Does not change the internal state of the statistic.
|
||||||
|
@ -149,4 +154,30 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
|
||||||
final int begin, final int length) {
|
final int begin, final int length) {
|
||||||
return Math.sqrt(variance.evaluate(values, mean, begin, length));
|
return Math.sqrt(variance.evaluate(values, mean, begin, length));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the Standard Deviation of the entries in the input array, using
|
||||||
|
* the precomputed mean value. Returns
|
||||||
|
* <code>Double.NaN</code> if the designated subarray is empty.
|
||||||
|
* <p>
|
||||||
|
* Returns 0 for a single-value (i.e. length = 1) sample.
|
||||||
|
* <p>
|
||||||
|
* The formula used assumes that the supplied mean value is the arithmetic
|
||||||
|
* mean of the sample data, not a known population parameter. This method
|
||||||
|
* is supplied only to save computation when the mean has already been
|
||||||
|
* computed.
|
||||||
|
* <p>
|
||||||
|
* Throws <code>IllegalArgumentException</code> if the array is null.
|
||||||
|
* <p>
|
||||||
|
* Does not change the internal state of the statistic.
|
||||||
|
*
|
||||||
|
* @param values the input array
|
||||||
|
* @param mean the precomputed mean value
|
||||||
|
* @return the standard deviation of the values or Double.NaN if length = 0
|
||||||
|
* @throws IllegalArgumentException if the array is null or the array index
|
||||||
|
* parameters are not valid
|
||||||
|
*/
|
||||||
|
public double evaluate(final double[] values, final double mean) {
|
||||||
|
return Math.sqrt(variance.evaluate(values, mean));
|
||||||
|
}
|
||||||
}
|
}
|
Loading…
Reference in New Issue