Add recently added features to the userguide.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1538282 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
280af43635
commit
40a97ba13a
|
@ -32,13 +32,13 @@
|
||||||
and t-, chi-square and ANOVA test statistics.
|
and t-, chi-square and ANOVA test statistics.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
<a href="#a1.2_Descriptive_statistics">Descriptive statistics</a><br></br>
|
<a href="#a1.2_Descriptive_statistics">Descriptive statistics</a><br/>
|
||||||
<a href="#a1.3_Frequency_distributions">Frequency distributions</a><br></br>
|
<a href="#a1.3_Frequency_distributions">Frequency distributions</a><br/>
|
||||||
<a href="#a1.4_Simple_regression">Simple Regression</a><br></br>
|
<a href="#a1.4_Simple_regression">Simple Regression</a><br/>
|
||||||
<a href="#a1.5_Multiple_linear_regression">Multiple Regression</a><br></br>
|
<a href="#a1.5_Multiple_linear_regression">Multiple Regression</a><br/>
|
||||||
<a href="#a1.6_Rank_transformations">Rank transformations</a><br></br>
|
<a href="#a1.6_Rank_transformations">Rank transformations</a><br/>
|
||||||
<a href="#a1.7_Covariance_and_correlation">Covariance and correlation</a><br></br>
|
<a href="#a1.7_Covariance_and_correlation">Covariance and correlation</a><br/>
|
||||||
<a href="#a1.8_Statistical_tests">Statistical Tests</a><br></br>
|
<a href="#a1.8_Statistical_tests">Statistical Tests</a><br/>
|
||||||
</p>
|
</p>
|
||||||
</subsection>
|
</subsection>
|
||||||
<subsection name="1.2 Descriptive statistics">
|
<subsection name="1.2 Descriptive statistics">
|
||||||
|
@ -154,7 +154,7 @@
|
||||||
Here are some examples showing how to compute Descriptive statistics.
|
Here are some examples showing how to compute Descriptive statistics.
|
||||||
<dl>
|
<dl>
|
||||||
<dt>Compute summary statistics for a list of double values</dt>
|
<dt>Compute summary statistics for a list of double values</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Using the <code>DescriptiveStatistics</code> aggregate
|
<dd>Using the <code>DescriptiveStatistics</code> aggregate
|
||||||
(values are stored in memory):
|
(values are stored in memory):
|
||||||
<source>
|
<source>
|
||||||
|
@ -206,7 +206,7 @@ mean = StatUtils.mean(values, 0, 3);
|
||||||
</dd>
|
</dd>
|
||||||
<dt>Maintain a "rolling mean" of the most recent 100 values from
|
<dt>Maintain a "rolling mean" of the most recent 100 values from
|
||||||
an input stream</dt>
|
an input stream</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Use a <code>DescriptiveStatistics</code> instance with
|
<dd>Use a <code>DescriptiveStatistics</code> instance with
|
||||||
window size set to 100
|
window size set to 100
|
||||||
<source>
|
<source>
|
||||||
|
@ -311,7 +311,7 @@ double totalSampleSum = aggregatedStats.getSum();
|
||||||
Here are some examples.
|
Here are some examples.
|
||||||
<dl>
|
<dl>
|
||||||
<dt>Compute a frequency distribution based on integer values</dt>
|
<dt>Compute a frequency distribution based on integer values</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Mixing integers, longs, Integers and Longs:
|
<dd>Mixing integers, longs, Integers and Longs:
|
||||||
<source>
|
<source>
|
||||||
Frequency f = new Frequency();
|
Frequency f = new Frequency();
|
||||||
|
@ -328,7 +328,7 @@ double totalSampleSum = aggregatedStats.getSum();
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<dt>Count string frequencies</dt>
|
<dt>Count string frequencies</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Using case-sensitive comparison, alpha sort order (natural comparator):
|
<dd>Using case-sensitive comparison, alpha sort order (natural comparator):
|
||||||
<source>
|
<source>
|
||||||
Frequency f = new Frequency();
|
Frequency f = new Frequency();
|
||||||
|
@ -455,7 +455,7 @@ System.out.println(regression.predict(1.5d)
|
||||||
More data points can be added and subsequent getXxx calls will incorporate
|
More data points can be added and subsequent getXxx calls will incorporate
|
||||||
additional data in statistics.
|
additional data in statistics.
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt>Estimate a model from a double[][] array of data points</dt>
|
<dt>Estimate a model from a double[][] array of data points</dt>
|
||||||
<dd>Instantiate a regression object and load dataset
|
<dd>Instantiate a regression object and load dataset
|
||||||
<source>
|
<source>
|
||||||
|
@ -478,7 +478,7 @@ System.out.println(regression.getSlopeStdErr());
|
||||||
More data points -- even another double[][] array -- can be added and subsequent
|
More data points -- even another double[][] array -- can be added and subsequent
|
||||||
getXxx calls will incorporate additional data in statistics.
|
getXxx calls will incorporate additional data in statistics.
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt>Estimate a model from a double[][] array of data points, <em>excluding</em> the intercept</dt>
|
<dt>Estimate a model from a double[][] array of data points, <em>excluding</em> the intercept</dt>
|
||||||
<dd>Instantiate a regression object and load dataset
|
<dd>Instantiate a regression object and load dataset
|
||||||
<source>
|
<source>
|
||||||
|
@ -558,7 +558,7 @@ System.out.println(regression.getInterceptStdErr() );
|
||||||
Here are some examples.
|
Here are some examples.
|
||||||
<dl>
|
<dl>
|
||||||
<dt>OLS regression</dt>
|
<dt>OLS regression</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Instantiate an OLS regression object and load a dataset:
|
<dd>Instantiate an OLS regression object and load a dataset:
|
||||||
<source>
|
<source>
|
||||||
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
|
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
|
||||||
|
@ -589,7 +589,7 @@ double sigma = regression.estimateRegressionStandardError();
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<dt>GLS regression</dt>
|
<dt>GLS regression</dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>Instantiate a GLS regression object and load a dataset:
|
<dd>Instantiate a GLS regression object and load a dataset:
|
||||||
<source>
|
<source>
|
||||||
GLSMultipleLinearRegression regression = new GLSMultipleLinearRegression();
|
GLSMultipleLinearRegression regression = new GLSMultipleLinearRegression();
|
||||||
|
@ -664,15 +664,17 @@ new NaturalRanking(NaNStrategy.REMOVED,TiesStrategy.SEQUENTIAL).rank(exampleData
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/correlation/Covariance.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/Covariance.html">
|
||||||
Covariance</a> computes covariances,
|
Covariance</a> computes covariances,
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/correlation/PearsonsCorrelation.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/PearsonsCorrelation.html">
|
||||||
PearsonsCorrelation</a> provides Pearson's Product-Moment correlation coefficients and
|
PearsonsCorrelation</a> provides Pearson's Product-Moment correlation coefficients,
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/correlation/SpearmansCorrelation.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/SpearmansCorrelation.html">
|
||||||
SpearmansCorrelation</a> computes Spearman's rank correlation.
|
SpearmansCorrelation</a> computes Spearman's rank correlation and
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/KendallsCorrelation.html">
|
||||||
|
KendallsCorrelation</a> computes Kendall's tau rank correlation.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
<strong>Implementation Notes</strong>
|
<strong>Implementation Notes</strong>
|
||||||
<ul>
|
<ul>
|
||||||
<li>
|
<li>
|
||||||
Unbiased covariances are given by the formula <br></br>
|
Unbiased covariances are given by the formula <br/>
|
||||||
<code>cov(X, Y) = sum [(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / (n - 1)</code>
|
<code>cov(X, Y) = sum [(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / (n - 1)</code>
|
||||||
where <code>E(X)</code> is the mean of <code>X</code> and <code>E(Y)</code>
|
where <code>E(X)</code> is the mean of <code>X</code> and <code>E(Y)</code>
|
||||||
is the mean of the <code>Y</code> values. Non-bias-corrected estimates use
|
is the mean of the <code>Y</code> values. Non-bias-corrected estimates use
|
||||||
|
@ -682,7 +684,7 @@ new NaturalRanking(NaNStrategy.REMOVED,TiesStrategy.SEQUENTIAL).rank(exampleData
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/correlation/PearsonsCorrelation.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/PearsonsCorrelation.html">
|
||||||
PearsonsCorrelation</a> computes correlations defined by the formula <br></br>
|
PearsonsCorrelation</a> computes correlations defined by the formula <br/>
|
||||||
<code>cor(X, Y) = sum[(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / [(n - 1)s(X)s(Y)]</code><br/>
|
<code>cor(X, Y) = sum[(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / [(n - 1)s(X)s(Y)]</code><br/>
|
||||||
where <code>E(X)</code> and <code>E(Y)</code> are means of <code>X</code> and <code>Y</code>
|
where <code>E(X)</code> and <code>E(Y)</code> are means of <code>X</code> and <code>Y</code>
|
||||||
and <code>s(X)</code>, <code>s(Y)</code> are standard deviations.
|
and <code>s(X)</code>, <code>s(Y)</code> are standard deviations.
|
||||||
|
@ -694,13 +696,18 @@ new NaturalRanking(NaNStrategy.REMOVED,TiesStrategy.SEQUENTIAL).rank(exampleData
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/ranking/NaturalRanking.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/ranking/NaturalRanking.html">
|
||||||
NaturalRanking</a> with default strategies for handling ties and NaN values is used.
|
NaturalRanking</a> with default strategies for handling ties and NaN values is used.
|
||||||
</li>
|
</li>
|
||||||
|
<li>
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/stat/correlation/KendallsCorrelation.html">
|
||||||
|
KendallsCorrelation</a> computes the association between two measured quantities. A tau test
|
||||||
|
is a non-parametric hypothesis test for statistical dependence based on the tau coefficient.
|
||||||
|
</li>
|
||||||
</ul>
|
</ul>
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
<strong>Examples:</strong>
|
<strong>Examples:</strong>
|
||||||
<dl>
|
<dl>
|
||||||
<dt><strong>Covariance of 2 arrays</strong></dt>
|
<dt><strong>Covariance of 2 arrays</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>To compute the unbiased covariance between 2 double arrays,
|
<dd>To compute the unbiased covariance between 2 double arrays,
|
||||||
<code>x</code> and <code>y</code>, use:
|
<code>x</code> and <code>y</code>, use:
|
||||||
<source>
|
<source>
|
||||||
|
@ -711,9 +718,9 @@ new Covariance().covariance(x, y)
|
||||||
covariance(x, y, false)
|
covariance(x, y, false)
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Covariance matrix</strong></dt>
|
<dt><strong>Covariance matrix</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd> A covariance matrix over the columns of a source matrix <code>data</code>
|
<dd> A covariance matrix over the columns of a source matrix <code>data</code>
|
||||||
can be computed using
|
can be computed using
|
||||||
<source>
|
<source>
|
||||||
|
@ -726,18 +733,18 @@ new Covariance().computeCovarianceMatrix(data)
|
||||||
computeCovarianceMatrix(data, false)
|
computeCovarianceMatrix(data, false)
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Pearson's correlation of 2 arrays</strong></dt>
|
<dt><strong>Pearson's correlation of 2 arrays</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>To compute the Pearson's product-moment correlation between two double arrays
|
<dd>To compute the Pearson's product-moment correlation between two double arrays
|
||||||
<code>x</code> and <code>y</code>, use:
|
<code>x</code> and <code>y</code>, use:
|
||||||
<source>
|
<source>
|
||||||
new PearsonsCorrelation().correlation(x, y)
|
new PearsonsCorrelation().correlation(x, y)
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Pearson's correlation matrix</strong></dt>
|
<dt><strong>Pearson's correlation matrix</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd> A (Pearson's) correlation matrix over the columns of a source matrix <code>data</code>
|
<dd> A (Pearson's) correlation matrix over the columns of a source matrix <code>data</code>
|
||||||
can be computed using
|
can be computed using
|
||||||
<source>
|
<source>
|
||||||
|
@ -746,9 +753,9 @@ new PearsonsCorrelation().computeCorrelationMatrix(data)
|
||||||
The i-jth entry of the returned matrix is the Pearson's product-moment correlation between the
|
The i-jth entry of the returned matrix is the Pearson's product-moment correlation between the
|
||||||
ith and jth columns of <code>data.</code>
|
ith and jth columns of <code>data.</code>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Pearson's correlation significance and standard errors</strong></dt>
|
<dt><strong>Pearson's correlation significance and standard errors</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd> To compute standard errors and/or significances of correlation coefficients
|
<dd> To compute standard errors and/or significances of correlation coefficients
|
||||||
associated with Pearson's correlation coefficients, start by creating a
|
associated with Pearson's correlation coefficients, start by creating a
|
||||||
<code>PearsonsCorrelation</code> instance
|
<code>PearsonsCorrelation</code> instance
|
||||||
|
@ -771,7 +778,7 @@ correlation.getCorrelationPValues()
|
||||||
</source>
|
</source>
|
||||||
<code>getCorrelationPValues().getEntry(i,j)</code> is the
|
<code>getCorrelationPValues().getEntry(i,j)</code> is the
|
||||||
probability that a random variable distributed as <code>t<sub>n-2</sub></code> takes
|
probability that a random variable distributed as <code>t<sub>n-2</sub></code> takes
|
||||||
a value with absolute value greater than or equal to <br></br>
|
a value with absolute value greater than or equal to <br/>
|
||||||
<code>|r<sub>ij</sub>|((n - 2) / (1 - r<sub>ij</sub><sup>2</sup>))<sup>1/2</sup></code>,
|
<code>|r<sub>ij</sub>|((n - 2) / (1 - r<sub>ij</sub><sup>2</sup>))<sup>1/2</sup></code>,
|
||||||
where <code>r<sub>ij</sub></code> is the estimated correlation between the ith and jth
|
where <code>r<sub>ij</sub></code> is the estimated correlation between the ith and jth
|
||||||
columns of the source array or RealMatrix. This is sometimes referred to as the
|
columns of the source array or RealMatrix. This is sometimes referred to as the
|
||||||
|
@ -784,9 +791,9 @@ new PearsonsCorrelation(data).getCorrelationPValues().getEntry(0,1)
|
||||||
of <code>data</code>. If this value is less than .01, we can say that the correlation
|
of <code>data</code>. If this value is less than .01, we can say that the correlation
|
||||||
between the two columns of data is significant at the 99% level.
|
between the two columns of data is significant at the 99% level.
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Spearman's rank correlation coefficient</strong></dt>
|
<dt><strong>Spearman's rank correlation coefficient</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>To compute the Spearman's rank-moment correlation between two double arrays
|
<dd>To compute the Spearman's rank-moment correlation between two double arrays
|
||||||
<code>x</code> and <code>y</code>:
|
<code>x</code> and <code>y</code>:
|
||||||
<source>
|
<source>
|
||||||
|
@ -798,7 +805,15 @@ RankingAlgorithm ranking = new NaturalRanking();
|
||||||
new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
||||||
</source>
|
</source>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
|
<dt><strong>Kendalls's tau rank correlation coefficient</strong></dt>
|
||||||
|
<br/>
|
||||||
|
<dd>To compute the Kendall's tau rank correlation between two double arrays
|
||||||
|
<code>x</code> and <code>y</code>:
|
||||||
|
<source>
|
||||||
|
new KendallsCorrelation().correlation(x, y)
|
||||||
|
</source>
|
||||||
|
</dd>
|
||||||
</dl>
|
</dl>
|
||||||
</p>
|
</p>
|
||||||
</subsection>
|
</subsection>
|
||||||
|
@ -814,9 +829,11 @@ new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
||||||
<a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc43.htm">
|
<a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc43.htm">
|
||||||
One-Way ANOVA</a>,
|
One-Way ANOVA</a>,
|
||||||
<a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc35.htm">
|
<a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc35.htm">
|
||||||
Mann-Whitney U</a> and
|
Mann-Whitney U</a>,
|
||||||
<a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
|
<a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
|
||||||
Wilcoxon signed rank</a> test statistics as well as
|
Wilcoxon signed rank</a> and
|
||||||
|
<a href="http://en.wikipedia.org/wiki/Binomial_test">
|
||||||
|
Binomial</a> test statistics as well as
|
||||||
<a href="http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
|
<a href="http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
|
||||||
p-values</a> associated with <code>t-</code>,
|
p-values</a> associated with <code>t-</code>,
|
||||||
<code>Chi-Square</code>, <code>G</code>, <code>One-Way ANOVA</code>, <code>Mann-Whitney U</code>
|
<code>Chi-Square</code>, <code>G</code>, <code>One-Way ANOVA</code>, <code>Mann-Whitney U</code>
|
||||||
|
@ -830,9 +847,11 @@ new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/inference/OneWayAnova.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/inference/OneWayAnova.html">
|
||||||
OneWayAnova</a>,
|
OneWayAnova</a>,
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/inference/MannWhitneyUTest.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/inference/MannWhitneyUTest.html">
|
||||||
MannWhitneyUTest</a>, and
|
MannWhitneyUTest</a>,
|
||||||
<a href="../apidocs/org/apache/commons/math3/stat/inference/WilcoxonSignedRankTest.html">
|
<a href="../apidocs/org/apache/commons/math3/stat/inference/WilcoxonSignedRankTest.html">
|
||||||
WilcoxonSignedRankTest</a>.
|
WilcoxonSignedRankTest</a> and
|
||||||
|
<a href="../apidocs/org/apache/commons/math3/stat/inference/BinomialTest.html">
|
||||||
|
BinomialTest</a>.
|
||||||
The <a href="../apidocs/org/apache/commons/math3/stat/inference/TestUtils.html">
|
The <a href="../apidocs/org/apache/commons/math3/stat/inference/TestUtils.html">
|
||||||
TestUtils</a> class provides static methods to get test instances or
|
TestUtils</a> class provides static methods to get test instances or
|
||||||
to compute test statistics directly. The examples below all use the
|
to compute test statistics directly. The examples below all use the
|
||||||
|
@ -886,7 +905,7 @@ new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
||||||
<strong>Examples:</strong>
|
<strong>Examples:</strong>
|
||||||
<dl>
|
<dl>
|
||||||
<dt><strong>One-sample <code>t</code> tests</strong></dt>
|
<dt><strong>One-sample <code>t</code> tests</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>To compare the mean of a double[] array to a fixed value:
|
<dd>To compare the mean of a double[] array to a fixed value:
|
||||||
<source>
|
<source>
|
||||||
double[] observed = {1d, 2d, 3d};
|
double[] observed = {1d, 2d, 3d};
|
||||||
|
@ -932,9 +951,9 @@ TestUtils.tTest(mu, observed, alpha);
|
||||||
To test, for example at the 95% level of confidence, use
|
To test, for example at the 95% level of confidence, use
|
||||||
<code>alpha = 0.05</code>
|
<code>alpha = 0.05</code>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Two-Sample t-tests</strong></dt>
|
<dt><strong>Two-Sample t-tests</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd><strong>Example 1:</strong> Paired test evaluating
|
<dd><strong>Example 1:</strong> Paired test evaluating
|
||||||
the null hypothesis that the mean difference between corresponding
|
the null hypothesis that the mean difference between corresponding
|
||||||
(paired) elements of the <code>double[]</code> arrays
|
(paired) elements of the <code>double[]</code> arrays
|
||||||
|
@ -1005,9 +1024,9 @@ TestUtils.tTest(sample1, sample2, .05);
|
||||||
replace "t" at the beginning of the method name with "homoscedasticT"
|
replace "t" at the beginning of the method name with "homoscedasticT"
|
||||||
</p>
|
</p>
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>Chi-square tests</strong></dt>
|
<dt><strong>Chi-square tests</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>To compute a chi-square statistic measuring the agreement between a
|
<dd>To compute a chi-square statistic measuring the agreement between a
|
||||||
<code>long[]</code> array of observed counts and a <code>double[]</code>
|
<code>long[]</code> array of observed counts and a <code>double[]</code>
|
||||||
array of expected counts, use:
|
array of expected counts, use:
|
||||||
|
@ -1043,7 +1062,7 @@ TestUtils.chiSquareTest(expected, observed, alpha);
|
||||||
TestUtils.chiSquareTest(counts);
|
TestUtils.chiSquareTest(counts);
|
||||||
</source>
|
</source>
|
||||||
The rows of the 2-way table are
|
The rows of the 2-way table are
|
||||||
<code>count[0], ... , count[count.length - 1]. </code><br></br>
|
<code>count[0], ... , count[count.length - 1]. </code><br/>
|
||||||
The chi-square statistic returned is
|
The chi-square statistic returned is
|
||||||
<code>sum((counts[i][j] - expected[i][j])^2/expected[i][j])</code>
|
<code>sum((counts[i][j] - expected[i][j])^2/expected[i][j])</code>
|
||||||
where the sum is taken over all table entries and
|
where the sum is taken over all table entries and
|
||||||
|
@ -1066,9 +1085,9 @@ TestUtils.chiSquareTest(counts, alpha);
|
||||||
The boolean value returned will be <code>true</code> iff the null
|
The boolean value returned will be <code>true</code> iff the null
|
||||||
hypothesis can be rejected with confidence <code>1 - alpha</code>.
|
hypothesis can be rejected with confidence <code>1 - alpha</code>.
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>G tests</strong></dt>
|
<dt><strong>G tests</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
<dd>G tests are an alternative to chi-square tests that are recommended
|
<dd>G tests are an alternative to chi-square tests that are recommended
|
||||||
when observed counts are small and / or incidence probabilities for
|
when observed counts are small and / or incidence probabilities for
|
||||||
some cells are small. See Ted Dunning's paper,
|
some cells are small. See Ted Dunning's paper,
|
||||||
|
@ -1077,8 +1096,8 @@ TestUtils.chiSquareTest(counts, alpha);
|
||||||
background and an empirical analysis showing now chi-square
|
background and an empirical analysis showing now chi-square
|
||||||
statistics can be misleading in the presence of low incidence probabilities.
|
statistics can be misleading in the presence of low incidence probabilities.
|
||||||
This paper also derives the formulas used in computing G statistics and the
|
This paper also derives the formulas used in computing G statistics and the
|
||||||
root log likelihood ratio provided by the <code>GTest</code> class.</dd>
|
root log likelihood ratio provided by the <code>GTest</code> class.
|
||||||
<dd>
|
</dd>
|
||||||
<dd>To compute a G-test statistic measuring the agreement between a
|
<dd>To compute a G-test statistic measuring the agreement between a
|
||||||
<code>long[]</code> array of observed counts and a <code>double[]</code>
|
<code>long[]</code> array of observed counts and a <code>double[]</code>
|
||||||
array of expected counts, use:
|
array of expected counts, use:
|
||||||
|
@ -1128,9 +1147,10 @@ new GTest().rootLogLikelihoodRatio(5, 1995, 0, 100000);
|
||||||
returns the root log likelihood associated with the null hypothesis that A
|
returns the root log likelihood associated with the null hypothesis that A
|
||||||
and B are independent.
|
and B are independent.
|
||||||
</dd>
|
</dd>
|
||||||
<br></br>
|
<br/>
|
||||||
<dt><strong>One-Way ANOVA tests</strong></dt>
|
<dt><strong>One-Way ANOVA tests</strong></dt>
|
||||||
<br></br>
|
<br/>
|
||||||
|
<dd>
|
||||||
<source>
|
<source>
|
||||||
double[] classA =
|
double[] classA =
|
||||||
{93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.0 };
|
{93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.0 };
|
||||||
|
|
Loading…
Reference in New Issue