Added negative zero support in FastMath.pow.

JIRA: MATH-1273
Github: closes #16
This commit is contained in:
Qualtagh 2015-09-11 19:42:20 +02:00 committed by Luc Maisonobe
parent 8c141a1705
commit 40f969bc9e
3 changed files with 387 additions and 5 deletions

View File

@ -54,6 +54,9 @@ If the output is not quite correct, check for invisible trailing spaces!
</release>
<release version="4.0" date="XXXX-XX-XX" description="">
<action dev="luc" type="add" issue="MATH-1273" due-to="Qualtagh"> <!-- backported to 3.6 -->
Added negative zero support in FastMath.pow.
</action>
<action dev="luc" type="add" issue="MATH-1271" due-to="Qualtagh">
Added divideUnsigned and remainderUnsigned to ArithmeticUtils.
</action>

View File

@ -1666,7 +1666,7 @@ public class FastMath {
* @param low low order bits
*/
public Split(final double high, final double low) {
this(high + low, high, low);
this(high == 0.0 ? (low == 0.0 && Double.doubleToRawLongBits(high) == Long.MIN_VALUE /* negative zero */ ? -0.0 : low) : high + low, high, low);
}
/** Simple constructor.

View File

@ -19,7 +19,9 @@ package org.apache.commons.math4.util;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Type;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import org.apache.commons.math4.TestUtils;
import org.apache.commons.math4.dfp.Dfp;
@ -353,6 +355,7 @@ public class FastMathTest {
@Test
public void testPowSpecialCases() {
final double EXACT = -1.0;
Assert.assertEquals("pow(-1, 0) should be 1.0", 1.0, FastMath.pow(-1.0, 0.0), Precision.EPSILON);
@ -392,7 +395,9 @@ public class FastMathTest {
Assert.assertEquals("pow(-0.0, -huge) should be Infinity", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -Double.MAX_VALUE), 1.0);
Assert.assertEquals("pow(-Inf, -3.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 3.0), 1.0);
Assert.assertEquals("pow(-Inf, 3.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 3.0), 1.0);
Assert.assertEquals("pow(-Inf, -3.0) should be -0.0", -0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -3.0), EXACT);
Assert.assertEquals("pow(-0.0, -3.5) should be Inf", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -3.5), 1.0);
@ -414,7 +419,7 @@ public class FastMathTest {
Assert.assertTrue("pow(NaN, -Infinity) should be NaN", Double.isNaN(FastMath.pow(Double.NaN, Double.NEGATIVE_INFINITY)));
Assert.assertEquals("pow(NaN, 0.0) should be 1.0", 1.0, FastMath.pow(Double.NaN, 0.0), Precision.EPSILON);
Assert.assertEquals("pow(NaN, -0.0) should be 1.0", 1.0, FastMath.pow(Double.NaN, -0.0), Precision.EPSILON);
Assert.assertEquals("pow(-Infinity, -Infinity) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY), Precision.EPSILON);
@ -430,9 +435,9 @@ public class FastMathTest {
Assert.assertTrue("pow(-Inf, NaN) should be NaN", Double.isNaN(FastMath.pow(Double.NEGATIVE_INFINITY, Double.NaN)));
Assert.assertEquals("pow(-Inf, -1.0) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -1.0), Precision.EPSILON);
Assert.assertEquals("pow(-Inf, -1.0) should be -0.0", -0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -1.0), EXACT);
Assert.assertEquals("pow(-Inf, -2.0) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -2.0), Precision.EPSILON);
Assert.assertEquals("pow(-Inf, -2.0) should be 0.0", 0.0, FastMath.pow(Double.NEGATIVE_INFINITY, -2.0), EXACT);
Assert.assertEquals("pow(-Inf, 1.0) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, 1.0), 1.0);
@ -440,6 +445,216 @@ public class FastMathTest {
Assert.assertTrue("pow(1.0, -Inf) should be NaN", Double.isNaN(FastMath.pow(1.0, Double.NEGATIVE_INFINITY)));
Assert.assertEquals("pow(-0.0, 1.0) should be -0.0", -0.0, FastMath.pow(-0.0, 1.0), EXACT);
Assert.assertEquals("pow(0.0, 1.0) should be 0.0", 0.0, FastMath.pow(0.0, 1.0), EXACT);
Assert.assertEquals("pow(0.0, +Inf) should be 0.0", 0.0, FastMath.pow(0.0, Double.POSITIVE_INFINITY), EXACT);
Assert.assertEquals("pow(-0.0, even) should be 0.0", 0.0, FastMath.pow(-0.0, 6.0), EXACT);
Assert.assertEquals("pow(-0.0, odd) should be -0.0", -0.0, FastMath.pow(-0.0, 13.0), EXACT);
Assert.assertEquals("pow(-0.0, -even) should be +Inf", Double.POSITIVE_INFINITY, FastMath.pow(-0.0, -6.0), EXACT);
Assert.assertEquals("pow(-0.0, -odd) should be -Inf", Double.NEGATIVE_INFINITY, FastMath.pow(-0.0, -13.0), EXACT);
Assert.assertEquals("pow(-2.0, 4.0) should be 16.0", 16.0, FastMath.pow(-2.0, 4.0), EXACT);
Assert.assertEquals("pow(-2.0, 4.5) should be NaN", Double.NaN, FastMath.pow(-2.0, 4.5), EXACT);
Assert.assertEquals("pow(-0.0, -0.0) should be 1.0", 1.0, FastMath.pow(-0.0, -0.0), EXACT);
Assert.assertEquals("pow(-0.0, 0.0) should be 1.0", 1.0, FastMath.pow(-0.0, 0.0), EXACT);
Assert.assertEquals("pow(0.0, -0.0) should be 1.0", 1.0, FastMath.pow(0.0, -0.0), EXACT);
Assert.assertEquals("pow(0.0, 0.0) should be 1.0", 1.0, FastMath.pow(0.0, 0.0), EXACT);
}
@Test(timeout=20000L)
public void testPowAllSpecialCases() {
final double EXACT = -1.0;
final double DOUBLES[] = new double[]{Double.NEGATIVE_INFINITY, -0.0, Double.NaN, 0.0, Double.POSITIVE_INFINITY,
Long.MIN_VALUE, Integer.MIN_VALUE, Short.MIN_VALUE, Byte.MIN_VALUE,
-(double)Long.MIN_VALUE, -(double)Integer.MIN_VALUE, -(double)Short.MIN_VALUE, -(double)Byte.MIN_VALUE,
Byte.MAX_VALUE, Short.MAX_VALUE, Integer.MAX_VALUE, Long.MAX_VALUE,
-Byte.MAX_VALUE, -Short.MAX_VALUE, -Integer.MAX_VALUE, -Long.MAX_VALUE,
Float.MAX_VALUE, Double.MAX_VALUE, Double.MIN_VALUE, Float.MIN_VALUE,
-Float.MAX_VALUE, -Double.MAX_VALUE, -Double.MIN_VALUE, -Float.MIN_VALUE,
0.5, 0.1, 0.2, 0.8, 1.1, 1.2, 1.5, 1.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 1.3, 2.2, 2.5, 2.8, 33.0, 33.1, 33.5, 33.8, 10.0, 300.0, 400.0, 500.0,
-0.5, -0.1, -0.2, -0.8, -1.1, -1.2, -1.5, -1.8, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, -1.3, -2.2, -2.5, -2.8, -33.0, -33.1, -33.5, -33.8, -10.0, -300.0, -400.0, -500.0};
// Special cases from Math.pow javadoc:
// If the second argument is positive or negative zero, then the result is 1.0.
for (double d : DOUBLES) {
Assert.assertEquals(1.0, FastMath.pow(d, 0.0), EXACT);
}
for (double d : DOUBLES) {
Assert.assertEquals(1.0, FastMath.pow(d, -0.0), EXACT);
}
// If the second argument is 1.0, then the result is the same as the first argument.
for (double d : DOUBLES) {
Assert.assertEquals(d, FastMath.pow(d, 1.0), EXACT);
}
// If the second argument is NaN, then the result is NaN.
for (double d : DOUBLES) {
Assert.assertEquals(Double.NaN, FastMath.pow(d, Double.NaN), EXACT);
}
// If the first argument is NaN and the second argument is nonzero, then the result is NaN.
for (double i : DOUBLES) {
if (i != 0.0) {
Assert.assertEquals(Double.NaN, FastMath.pow(Double.NaN, i), EXACT);
}
}
// If the absolute value of the first argument is greater than 1 and the second argument is positive infinity, or
// the absolute value of the first argument is less than 1 and the second argument is negative infinity, then the result is positive infinity.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(d, Double.POSITIVE_INFINITY), EXACT);
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(d, Double.NEGATIVE_INFINITY), EXACT);
}
}
// If the absolute value of the first argument is greater than 1 and the second argument is negative infinity, or
// the absolute value of the first argument is less than 1 and the second argument is positive infinity, then the result is positive zero.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertEquals(0.0, FastMath.pow(d, Double.NEGATIVE_INFINITY), EXACT);
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertEquals(0.0, FastMath.pow(d, Double.POSITIVE_INFINITY), EXACT);
}
}
// If the absolute value of the first argument equals 1 and the second argument is infinite, then the result is NaN.
Assert.assertEquals(Double.NaN, FastMath.pow(1.0, Double.POSITIVE_INFINITY), EXACT);
Assert.assertEquals(Double.NaN, FastMath.pow(1.0, Double.NEGATIVE_INFINITY), EXACT);
Assert.assertEquals(Double.NaN, FastMath.pow(-1.0, Double.POSITIVE_INFINITY), EXACT);
Assert.assertEquals(Double.NaN, FastMath.pow(-1.0, Double.NEGATIVE_INFINITY), EXACT);
// If the first argument is positive zero and the second argument is greater than zero, or
// the first argument is positive infinity and the second argument is less than zero, then the result is positive zero.
for (double i : DOUBLES) {
if (i > 0.0) {
Assert.assertEquals(0.0, FastMath.pow(0.0, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i < 0.0) {
Assert.assertEquals(0.0, FastMath.pow(Double.POSITIVE_INFINITY, i), EXACT);
}
}
// If the first argument is positive zero and the second argument is less than zero, or
// the first argument is positive infinity and the second argument is greater than zero, then the result is positive infinity.
for (double i : DOUBLES) {
if (i < 0.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(0.0, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i > 0.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(Double.POSITIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is greater than zero but not a finite odd integer, or
// the first argument is negative infinity and the second argument is less than zero but not a finite odd integer, then the result is positive zero.
for (double i : DOUBLES) {
if (i > 0.0 && (Double.isInfinite(i) || i % 2.0 == 0.0)) {
Assert.assertEquals(0.0, FastMath.pow(-0.0, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i < 0.0 && (Double.isInfinite(i) || i % 2.0 == 0.0)) {
Assert.assertEquals(0.0, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is a positive finite odd integer, or
// the first argument is negative infinity and the second argument is a negative finite odd integer, then the result is negative zero.
for (double i : DOUBLES) {
if (i > 0.0 && i % 2.0 == 1.0) {
Assert.assertEquals(-0.0, FastMath.pow(-0.0, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i < 0.0 && i % 2.0 == -1.0) {
Assert.assertEquals(-0.0, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is less than zero but not a finite odd integer, or
// the first argument is negative infinity and the second argument is greater than zero but not a finite odd integer, then the result is positive infinity.
for (double i : DOUBLES) {
if (i > 0.0 && (Double.isInfinite(i) || i % 2.0 == 0.0)) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i < 0.0 && (Double.isInfinite(i) || i % 2.0 == 0.0)) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(-0.0, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is a negative finite odd integer, or
// the first argument is negative infinity and the second argument is a positive finite odd integer, then the result is negative infinity.
for (double i : DOUBLES) {
if (i > 0.0 && i % 2.0 == 1.0) {
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
for (double i : DOUBLES) {
if (i < 0.0 && i % 2.0 == -1.0) {
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.pow(-0.0, i), EXACT);
}
}
for (double d : DOUBLES) {
// If the first argument is finite and less than zero
if (d < 0.0 && Math.abs(d) <= Double.MAX_VALUE) {
for (double i : DOUBLES) {
if (Math.abs(i) <= Double.MAX_VALUE) {
// if the second argument is a finite even integer, the result is equal to the result of raising the absolute value of the first argument to the power of the second argument
if (i % 2.0 == 0.0) Assert.assertEquals(FastMath.pow(-d, i), FastMath.pow(d, i), EXACT);
// if the second argument is a finite odd integer, the result is equal to the negative of the result of raising the absolute value of the first argument to the power of the second argument
else if (Math.abs(i) % 2.0 == 1.0) Assert.assertEquals(-FastMath.pow(-d, i), FastMath.pow(d, i), EXACT);
// if the second argument is finite and not an integer, then the result is NaN.
else Assert.assertEquals(Double.NaN, FastMath.pow(d, i), EXACT);
}
}
}
}
// If both arguments are integers, then the result is exactly equal to the mathematical result of raising the first argument to the power
// of the second argument if that result can in fact be represented exactly as a double value.
final int TOO_BIG_TO_CALCULATE = 18; // This value is empirical: 2^18 > 200.000 resulting bits after raising d to power i.
for (double d : DOUBLES) {
if (d % 1.0 == 0.0) {
boolean dNegative = Double.doubleToRawLongBits( d ) < 0L;
for (double i : DOUBLES) {
if (i % 1.0 == 0.0) {
BigInteger bd = BigDecimal.valueOf(d).toBigInteger().abs();
BigInteger bi = BigDecimal.valueOf(i).toBigInteger().abs();
double expected;
if (bd.bitLength() > 1 && bi.bitLength() > 1 && 32 - Integer.numberOfLeadingZeros(bd.bitLength()) + bi.bitLength() > TOO_BIG_TO_CALCULATE) {
// Result would be too big.
expected = i < 0.0 ? 0.0 : Double.POSITIVE_INFINITY;
} else {
BigInteger res = ArithmeticUtils.pow(bd, bi);
if (i >= 0.0) {
expected = res.doubleValue();
} else if (res.signum() == 0) {
expected = Double.POSITIVE_INFINITY;
} else {
expected = BigDecimal.ONE.divide( new BigDecimal( res ), 1024, RoundingMode.HALF_UP ).doubleValue();
}
}
if (dNegative && bi.testBit( 0 )) {
expected = -expected;
}
Assert.assertEquals(d + "^" + i + "=" + expected + ", Math.pow=" + Math.pow(d, i), expected, FastMath.pow(d, i), expected == 0.0 || Double.isInfinite(expected) || Double.isNaN(expected) ? EXACT : 2.0 * Math.ulp(expected));
}
}
}
}
}
@Test
@ -1236,6 +1451,170 @@ public class FastMathTest {
public void testIntPowLongMinValue() {
Assert.assertEquals(1.0, FastMath.pow(1.0, Long.MIN_VALUE), -1.0);
}
@Test(timeout=5000L)
public void testIntPowSpecialCases() {
final double EXACT = -1.0;
final double DOUBLES[] = new double[]{Double.NEGATIVE_INFINITY, -0.0, Double.NaN, 0.0, Double.POSITIVE_INFINITY,
Long.MIN_VALUE, Integer.MIN_VALUE, Short.MIN_VALUE, Byte.MIN_VALUE,
-(double)Long.MIN_VALUE, -(double)Integer.MIN_VALUE, -(double)Short.MIN_VALUE, -(double)Byte.MIN_VALUE,
Byte.MAX_VALUE, Short.MAX_VALUE, Integer.MAX_VALUE, Long.MAX_VALUE,
-Byte.MAX_VALUE, -Short.MAX_VALUE, -Integer.MAX_VALUE, -Long.MAX_VALUE,
Float.MAX_VALUE, Double.MAX_VALUE, Double.MIN_VALUE, Float.MIN_VALUE,
-Float.MAX_VALUE, -Double.MAX_VALUE, -Double.MIN_VALUE, -Float.MIN_VALUE,
0.5, 0.1, 0.2, 0.8, 1.1, 1.2, 1.5, 1.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 1.3, 2.2, 2.5, 2.8, 33.0, 33.1, 33.5, 33.8, 10.0, 300.0, 400.0, 500.0,
-0.5, -0.1, -0.2, -0.8, -1.1, -1.2, -1.5, -1.8, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, -1.3, -2.2, -2.5, -2.8, -33.0, -33.1, -33.5, -33.8, -10.0, -300.0, -400.0, -500.0};
final long INTS[] = new long[]{Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2, Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2, 0, 1, 2, 3, 5, 8, 10, 20, 100, 300, 500, -1, -2, -3, -5, -8, -10, -20, -100, -300, -500};
// Special cases from Math.pow javadoc:
// If the second argument is positive or negative zero, then the result is 1.0.
for (double d : DOUBLES) {
Assert.assertEquals(1.0, FastMath.pow(d, 0L), EXACT);
}
// If the second argument is 1.0, then the result is the same as the first argument.
for (double d : DOUBLES) {
Assert.assertEquals(d, FastMath.pow(d, 1L), EXACT);
}
// If the second argument is NaN, then the result is NaN. <- Impossible with int.
// If the first argument is NaN and the second argument is nonzero, then the result is NaN.
for (long i : INTS) {
if (i != 0L) {
Assert.assertEquals(Double.NaN, FastMath.pow(Double.NaN, i), EXACT);
}
}
// If the absolute value of the first argument is greater than 1 and the second argument is positive infinity, or
// the absolute value of the first argument is less than 1 and the second argument is negative infinity, then the result is positive infinity.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(d, Long.MAX_VALUE - 1L), EXACT);
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(d, Long.MIN_VALUE), EXACT);
}
}
// Note: Long.MAX_VALUE isn't actually an infinity, so its parity affects the sign of resulting infinity.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertTrue(Double.isInfinite(FastMath.pow(d, Long.MAX_VALUE)));
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertTrue(Double.isInfinite(FastMath.pow(d, Long.MIN_VALUE + 1L)));
}
}
// If the absolute value of the first argument is greater than 1 and the second argument is negative infinity, or
// the absolute value of the first argument is less than 1 and the second argument is positive infinity, then the result is positive zero.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertEquals(0.0, FastMath.pow(d, Long.MIN_VALUE), EXACT);
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertEquals(0.0, FastMath.pow(d, Long.MAX_VALUE - 1L), EXACT);
}
}
// Note: Long.MAX_VALUE isn't actually an infinity, so its parity affects the sign of resulting zero.
for (double d : DOUBLES) {
if (Math.abs(d) > 1.0) {
Assert.assertTrue(FastMath.pow(d, Long.MIN_VALUE + 1L) == 0.0);
}
}
for (double d : DOUBLES) {
if (Math.abs(d) < 1.0) {
Assert.assertTrue(FastMath.pow(d, Long.MAX_VALUE) == 0.0);
}
}
// If the absolute value of the first argument equals 1 and the second argument is infinite, then the result is NaN. <- Impossible with int.
// If the first argument is positive zero and the second argument is greater than zero, or
// the first argument is positive infinity and the second argument is less than zero, then the result is positive zero.
for (long i : INTS) {
if (i > 0L) {
Assert.assertEquals(0.0, FastMath.pow(0.0, i), EXACT);
}
}
for (long i : INTS) {
if (i < 0L) {
Assert.assertEquals(0.0, FastMath.pow(Double.POSITIVE_INFINITY, i), EXACT);
}
}
// If the first argument is positive zero and the second argument is less than zero, or
// the first argument is positive infinity and the second argument is greater than zero, then the result is positive infinity.
for (long i : INTS) {
if (i < 0L) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(0.0, i), EXACT);
}
}
for (long i : INTS) {
if (i > 0L) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(Double.POSITIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is greater than zero but not a finite odd integer, or
// the first argument is negative infinity and the second argument is less than zero but not a finite odd integer, then the result is positive zero.
for (long i : INTS) {
if (i > 0L && (i & 1L) == 0L) {
Assert.assertEquals(0.0, FastMath.pow(-0.0, i), EXACT);
}
}
for (long i : INTS) {
if (i < 0L && (i & 1L) == 0L) {
Assert.assertEquals(0.0, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is a positive finite odd integer, or
// the first argument is negative infinity and the second argument is a negative finite odd integer, then the result is negative zero.
for (long i : INTS) {
if (i > 0L && (i & 1L) == 1L) {
Assert.assertEquals(-0.0, FastMath.pow(-0.0, i), EXACT);
}
}
for (long i : INTS) {
if (i < 0L && (i & 1L) == 1L) {
Assert.assertEquals(-0.0, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is less than zero but not a finite odd integer, or
// the first argument is negative infinity and the second argument is greater than zero but not a finite odd integer, then the result is positive infinity.
for (long i : INTS) {
if (i > 0L && (i & 1L) == 0L) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
for (long i : INTS) {
if (i < 0L && (i & 1L) == 0L) {
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.pow(-0.0, i), EXACT);
}
}
// If the first argument is negative zero and the second argument is a negative finite odd integer, or
// the first argument is negative infinity and the second argument is a positive finite odd integer, then the result is negative infinity.
for (long i : INTS) {
if (i > 0L && (i & 1L) == 1L) {
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.pow(Double.NEGATIVE_INFINITY, i), EXACT);
}
}
for (long i : INTS) {
if (i < 0L && (i & 1L) == 1L) {
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.pow(-0.0, i), EXACT);
}
}
for (double d : DOUBLES) {
// If the first argument is finite and less than zero
if (d < 0.0 && Math.abs(d) <= Double.MAX_VALUE) {
for (long i : INTS) {
// if the second argument is a finite even integer, the result is equal to the result of raising the absolute value of the first argument to the power of the second argument
if ((i & 1L) == 0L) Assert.assertEquals(FastMath.pow(-d, i), FastMath.pow(d, i), EXACT);
// if the second argument is a finite odd integer, the result is equal to the negative of the result of raising the absolute value of the first argument to the power of the second argument
else Assert.assertEquals(-FastMath.pow(-d, i), FastMath.pow(d, i), EXACT);
// if the second argument is finite and not an integer, then the result is NaN. <- Impossible with int.
}
}
}
// If both arguments are integers, then the result is exactly equal to the mathematical result of raising the first argument to the power
// of the second argument if that result can in fact be represented exactly as a double value. <- Other tests.
}
@Test
public void testIncrementExactInt() {