Submitted by: Phil Steitz git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140883 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
516c15d88b
commit
42e427ce8c
|
@ -0,0 +1,261 @@
|
|||
/* ====================================================================
|
||||
* The Apache Software License, Version 1.1
|
||||
*
|
||||
* Copyright (c) 2003 The Apache Software Foundation. All rights
|
||||
* reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. The end-user documentation included with the redistribution, if
|
||||
* any, must include the following acknowlegement:
|
||||
* "This product includes software developed by the
|
||||
* Apache Software Foundation (http://www.apache.org/)."
|
||||
* Alternately, this acknowlegement may appear in the software itself,
|
||||
* if and wherever such third-party acknowlegements normally appear.
|
||||
*
|
||||
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
|
||||
* Foundation" must not be used to endorse or promote products derived
|
||||
* from this software without prior written permission. For written
|
||||
* permission, please contact apache@apache.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "Apache"
|
||||
* nor may "Apache" appear in their names without prior written
|
||||
* permission of the Apache Software Foundation.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||||
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This software consists of voluntary contributions made by many
|
||||
* individuals on behalf of the Apache Software Foundation. For more
|
||||
* information on the Apache Software Foundation, please see
|
||||
* <http://www.apache.org/>.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math;
|
||||
|
||||
/**
|
||||
* Some useful additions to the built-in functions in lang.Math<p>
|
||||
*
|
||||
* @author Phil Steitz
|
||||
* @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:13 $
|
||||
*/
|
||||
public class MathUtils {
|
||||
|
||||
/**
|
||||
* Returns an exact representation of the
|
||||
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
|
||||
* Binomial Coefficient</a>, "<code>n choose k</code>",
|
||||
* the number of <code>k</code>-element subsets that can be selected from
|
||||
* an <code>n</code>-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>0 < k <= n </code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* <li> The result is small enough to fit into a <code>long</code>. The
|
||||
* largest value of <code>n</code> for which all coefficients are
|
||||
* <code> < Long.MAX_VALUE</code> is 66. If the computed value
|
||||
* exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
|
||||
* </code> is thrown.</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return <code>n choose k</code>
|
||||
*/
|
||||
public static long binomialCoefficient(int n, int k) {
|
||||
if (n < k) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n >= k for binomial coefficient (n,k)");
|
||||
}
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n > 0 for binomial coefficient (n,k)");
|
||||
}
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
|
||||
long result = Math.round(binomialCoefficientDouble(n, k));
|
||||
if (result == Long.MAX_VALUE) {
|
||||
throw new ArithmeticException
|
||||
("result too large to represent in a long integer");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a <code>double</code> representation of the
|
||||
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
|
||||
* Binomial Coefficient</a>, "<code>n choose k</code>",
|
||||
* the number of <code>k</code>-element subsets that can be selected from
|
||||
* an <code>n</code>-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>0 < k <= n </code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* <li> The result is small enough to fit into a <code>double</code>.
|
||||
* The largest value of <code>n</code> for which all coefficients are
|
||||
* < Double.MAX_VALUE is 1029. If the computed value exceeds
|
||||
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return <code>n choose k</code>
|
||||
*/
|
||||
public static double binomialCoefficientDouble(int n, int k) {
|
||||
return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the natural <code>log</code> of the
|
||||
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
|
||||
* Binomial Coefficient</a>, "<code>n choose k</code>",
|
||||
* the number of <code>k</code>-element subsets that can be selected from
|
||||
* an <code>n</code>-element set.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>0 < k <= n </code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n the size of the set
|
||||
* @param k the size of the subsets to be counted
|
||||
* @return <code>n choose k</code>
|
||||
*/
|
||||
public static double binomialCoefficientLog(int n, int k) {
|
||||
if (n < k) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n >= k for binomial coefficient (n,k)");
|
||||
}
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n > 0 for binomial coefficient (n,k)");
|
||||
}
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 0;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return Math.log((double) n);
|
||||
}
|
||||
double logSum = 0;
|
||||
|
||||
// n!/k!
|
||||
for (int i = k + 1; i <= n; i++) {
|
||||
logSum += Math.log((double) i);
|
||||
}
|
||||
|
||||
// divide by (n-k)!
|
||||
for (int i = 2; i <= n - k; i++) {
|
||||
logSum -= Math.log((double) i);
|
||||
}
|
||||
|
||||
return logSum;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns <code>n</code>
|
||||
* <a href="http://mathworld.wolfram.com/Factorial.html">
|
||||
* Factorial</a>, or <code>n!</code>,
|
||||
* the product of the numbers <code>1,...,n</code>.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>n > 0</code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* <li> The result is small enough to fit into a <code>long</code>. The
|
||||
* largest value of <code>n</code> for which <code>n!</code>
|
||||
* < Long.MAX_VALUE</code> is 20. If the computed value
|
||||
* exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
|
||||
* </code> is thrown.</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n argument
|
||||
* @return <code>n!</code>
|
||||
*/
|
||||
public static long factorial(int n) {
|
||||
long result = Math.round(factorialDouble(n));
|
||||
if (result == Long.MAX_VALUE) {
|
||||
throw new ArithmeticException
|
||||
("result too large to represent in a long integer");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns <code>n</code>
|
||||
* <a href="http://mathworld.wolfram.com/Factorial.html">
|
||||
* Factorial</a>, or <code>n!</code>,
|
||||
* the product of the numbers <code>1,...,n</code>, as as
|
||||
* <code>double</code>.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>n > 0</code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* <li> The result is small enough to fit into a <code>double</code>. The
|
||||
* largest value of <code>n</code> for which <code>n!</code>
|
||||
* < Double.MAX_VALUE</code> is 170. If the computed value exceeds
|
||||
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n argument
|
||||
* @return <code>n!</code>
|
||||
*/
|
||||
public static double factorialDouble(int n) {
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n > 0 for n!");
|
||||
}
|
||||
return Math.floor(Math.exp(factorialLog(n)) + 0.5);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the natural <code>log</code> of <code>n</code>
|
||||
* <a href="http://mathworld.wolfram.com/Factorial.html">
|
||||
* Factorial</a>, or <code>n!</code>,
|
||||
* the product of the numbers <code>1,...,n</code>, as as
|
||||
* <code>double</code>.
|
||||
* <p>
|
||||
* <Strong>Preconditions</strong>:<ul>
|
||||
* <li> <code>n > 0</code> (otherwise
|
||||
* <code>IllegalArgumentException</code> is thrown)</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param n argument
|
||||
* @return <code>n!</code>
|
||||
*/
|
||||
public static double factorialLog(int n) {
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException
|
||||
("must have n > 0 for n!");
|
||||
}
|
||||
double logSum = 0;
|
||||
for (int i = 2; i <= n; i++) {
|
||||
logSum += Math.log((double) i);
|
||||
}
|
||||
return logSum;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,319 @@
|
|||
/* ====================================================================
|
||||
* The Apache Software License, Version 1.1
|
||||
*
|
||||
* Copyright (c) 2003 The Apache Software Foundation. All rights
|
||||
* reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. The end-user documentation included with the redistribution, if
|
||||
* any, must include the following acknowlegement:
|
||||
* "This product includes software developed by the
|
||||
* Apache Software Foundation (http://www.apache.org/)."
|
||||
* Alternately, this acknowlegement may appear in the software itself,
|
||||
* if and wherever such third-party acknowlegements normally appear.
|
||||
*
|
||||
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
|
||||
* Foundation" must not be used to endorse or promote products derived
|
||||
* from this software without prior written permission. For written
|
||||
* permission, please contact apache@apache.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "Apache"
|
||||
* nor may "Apache" appear in their names without prior written
|
||||
* permission of the Apache Software Foundation.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||||
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This software consists of voluntary contributions made by many
|
||||
* individuals on behalf of the Apache Software Foundation. For more
|
||||
* information on the Apache Software Foundation, please see
|
||||
* <http://www.apache.org/>.
|
||||
*/
|
||||
package org.apache.commons.math;
|
||||
|
||||
import junit.framework.Test;
|
||||
import junit.framework.TestCase;
|
||||
import junit.framework.TestSuite;
|
||||
import junit.framework.AssertionFailedError;
|
||||
|
||||
/**
|
||||
* Test cases for the MathUtils class.
|
||||
*
|
||||
* @author Phil Steitz
|
||||
* @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:14 $
|
||||
*/
|
||||
|
||||
public final class MathUtilsTest extends TestCase {
|
||||
|
||||
public MathUtilsTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
public void setUp() {
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
TestSuite suite = new TestSuite(MathUtilsTest.class);
|
||||
suite.setName("MathUtils Tests");
|
||||
return suite;
|
||||
}
|
||||
|
||||
public void testBinomialCoefficient() {
|
||||
long[] bcoef5 = {1,5,10,10,5,1};
|
||||
long[] bcoef6 = {1,6,15,20,15,6,1};
|
||||
for (int i = 0; i < 6; i++) {
|
||||
assertEquals("5 choose " + i, bcoef5[i],
|
||||
MathUtils.binomialCoefficient(5,i));
|
||||
}
|
||||
for (int i = 0; i < 7; i++) {
|
||||
assertEquals("6 choose " + i, bcoef6[i],
|
||||
MathUtils.binomialCoefficient(6,i));
|
||||
}
|
||||
|
||||
for (int n = 1; n < 10; n++) {
|
||||
for (int k = 0; k <= n; k++) {
|
||||
assertEquals(n + " choose " + k, binomialCoefficient(n, k),
|
||||
MathUtils.binomialCoefficient(n, k));
|
||||
assertEquals(n + " choose " + k,(double) binomialCoefficient(n, k),
|
||||
MathUtils.binomialCoefficientDouble(n, k),Double.MIN_VALUE);
|
||||
assertEquals(n + " choose " + k,
|
||||
Math.log((double) binomialCoefficient(n, k)),
|
||||
MathUtils.binomialCoefficientLog(n, k),10E-12);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Takes a long time for recursion to unwind, but succeeds
|
||||
* and yields exact value = 2,333,606,220
|
||||
|
||||
assertEquals(MathUtils.binomialCoefficient(34,17),
|
||||
binomialCoefficient(34,17));
|
||||
*/
|
||||
}
|
||||
|
||||
public void testBinomialCoefficientFail() {
|
||||
try {
|
||||
long x = MathUtils.binomialCoefficient(0,0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
long x = MathUtils.binomialCoefficient(4,5);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.binomialCoefficientDouble(0,0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.binomialCoefficientDouble(4,5);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.binomialCoefficientLog(0,0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.binomialCoefficientLog(4,5);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
long x = MathUtils.binomialCoefficient(67,34);
|
||||
fail ("expecting ArithmeticException");
|
||||
} catch (ArithmeticException ex) {
|
||||
;
|
||||
}
|
||||
double x = MathUtils.binomialCoefficientDouble(1030,515);
|
||||
assertTrue("expecting infinite binomial coefficient",
|
||||
Double.isInfinite(x));
|
||||
}
|
||||
|
||||
public void testFactorial() {
|
||||
for (int i = 1; i < 10; i++) {
|
||||
assertEquals(i + "! ",factorial(i),MathUtils.factorial(i));
|
||||
assertEquals(i + "! ",(double)factorial(i),
|
||||
MathUtils.factorialDouble(i),Double.MIN_VALUE);
|
||||
assertEquals(i + "! ",Math.log((double)factorial(i)),
|
||||
MathUtils.factorialLog(i),10E-12);
|
||||
}
|
||||
}
|
||||
|
||||
public void testFactorialFail() {
|
||||
try {
|
||||
long x = MathUtils.factorial(0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.factorialDouble(0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.factorialLog(0);
|
||||
fail ("expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
;
|
||||
}
|
||||
try {
|
||||
double x = MathUtils.factorial(21);
|
||||
fail ("expecting ArithmeticException");
|
||||
} catch (ArithmeticException ex) {
|
||||
;
|
||||
}
|
||||
assertTrue("expecting infinite factorial value",
|
||||
Double.isInfinite(MathUtils.factorialDouble(171)));
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Exact recursive implementation to test against
|
||||
*/
|
||||
private long binomialCoefficient(int n, int k) {
|
||||
if ((n == k) || (k == 0)) {
|
||||
return 1;
|
||||
}
|
||||
if ((k == 1) || (k == n - 1)) {
|
||||
return n;
|
||||
}
|
||||
return binomialCoefficient(n - 1, k - 1) +
|
||||
binomialCoefficient(n - 1, k);
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the largest values of n for which binomialCoefficient and
|
||||
* binomialCoefficientDouble will return values that fit in a long, double,
|
||||
* resp. Remove comments around test below to get this in test-report
|
||||
*
|
||||
public void testLimits() {
|
||||
findBinomialLimits();
|
||||
}
|
||||
*/
|
||||
|
||||
private void findBinomialLimits() {
|
||||
/**
|
||||
* will kick out 66 as the limit for long
|
||||
*/
|
||||
boolean foundLimit = false;
|
||||
int test = 10;
|
||||
while (!foundLimit) {
|
||||
try {
|
||||
double x = MathUtils.binomialCoefficient(test, test / 2);
|
||||
} catch (ArithmeticException ex) {
|
||||
foundLimit = true;
|
||||
System.out.println
|
||||
("largest n for binomialCoefficient = " + (test - 1) );
|
||||
}
|
||||
test++;
|
||||
}
|
||||
|
||||
/**
|
||||
* will kick out 1029 as the limit for double
|
||||
*/
|
||||
foundLimit = false;
|
||||
test = 10;
|
||||
while (!foundLimit) {
|
||||
double x = MathUtils.binomialCoefficientDouble(test, test / 2);
|
||||
if (Double.isInfinite(x)) {
|
||||
foundLimit = true;
|
||||
System.out.println
|
||||
("largest n for binomialCoefficientD = " + (test - 1) );
|
||||
}
|
||||
test++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the largest values of n for which factiorial and
|
||||
* factorialDouble will return values that fit in a long, double,
|
||||
* resp. Remove comments around test below to get this in test-report
|
||||
|
||||
public void testFactiorialLimits() {
|
||||
findFactorialLimits();
|
||||
}
|
||||
*/
|
||||
|
||||
private void findFactorialLimits() {
|
||||
/**
|
||||
* will kick out 20 as the limit for long
|
||||
*/
|
||||
boolean foundLimit = false;
|
||||
int test = 10;
|
||||
while (!foundLimit) {
|
||||
try {
|
||||
double x = MathUtils.factorial(test);
|
||||
} catch (ArithmeticException ex) {
|
||||
foundLimit = true;
|
||||
System.out.println
|
||||
("largest n for factorial = " + (test - 1) );
|
||||
}
|
||||
test++;
|
||||
}
|
||||
|
||||
/**
|
||||
* will kick out 170 as the limit for double
|
||||
*/
|
||||
foundLimit = false;
|
||||
test = 10;
|
||||
while (!foundLimit) {
|
||||
double x = MathUtils.factorialDouble(test);
|
||||
if (Double.isInfinite(x)) {
|
||||
foundLimit = true;
|
||||
System.out.println
|
||||
("largest n for factorialDouble = " + (test - 1) );
|
||||
}
|
||||
test++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Exact direct multiplication implementation to test against
|
||||
*/
|
||||
private long factorial(int n) {
|
||||
long result = 1;
|
||||
for (int i = 2; i <= n; i++) {
|
||||
result *= i;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
Loading…
Reference in New Issue