Submitted by:	Phil Steitz


git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140883 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Mark R. Diggory 2003-06-04 02:31:14 +00:00
parent 516c15d88b
commit 42e427ce8c
2 changed files with 580 additions and 0 deletions

View File

@ -0,0 +1,261 @@
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowlegement may appear in the software itself,
* if and wherever such third-party acknowlegements normally appear.
*
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
package org.apache.commons.math;
/**
* Some useful additions to the built-in functions in lang.Math<p>
*
* @author Phil Steitz
* @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:13 $
*/
public class MathUtils {
/**
* Returns an exact representation of the
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
* Binomial Coefficient</a>, "<code>n choose k</code>",
* the number of <code>k</code>-element subsets that can be selected from
* an <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>0 < k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>long</code>. The
* largest value of <code>n</code> for which all coefficients are
* <code> < Long.MAX_VALUE</code> is 66. If the computed value
* exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
* </code> is thrown.</li>
* </ul>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
*/
public static long binomialCoefficient(int n, int k) {
if (n < k) {
throw new IllegalArgumentException
("must have n >= k for binomial coefficient (n,k)");
}
if (n <= 0) {
throw new IllegalArgumentException
("must have n > 0 for binomial coefficient (n,k)");
}
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
long result = Math.round(binomialCoefficientDouble(n, k));
if (result == Long.MAX_VALUE) {
throw new ArithmeticException
("result too large to represent in a long integer");
}
return result;
}
/**
* Returns a <code>double</code> representation of the
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
* Binomial Coefficient</a>, "<code>n choose k</code>",
* the number of <code>k</code>-element subsets that can be selected from
* an <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>0 < k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>double</code>.
* The largest value of <code>n</code> for which all coefficients are
* < Double.MAX_VALUE is 1029. If the computed value exceeds
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
* </ul>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
*/
public static double binomialCoefficientDouble(int n, int k) {
return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5);
}
/**
* Returns the natural <code>log</code> of the
* <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
* Binomial Coefficient</a>, "<code>n choose k</code>",
* the number of <code>k</code>-element subsets that can be selected from
* an <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>0 < k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
*/
public static double binomialCoefficientLog(int n, int k) {
if (n < k) {
throw new IllegalArgumentException
("must have n >= k for binomial coefficient (n,k)");
}
if (n <= 0) {
throw new IllegalArgumentException
("must have n > 0 for binomial coefficient (n,k)");
}
if ((n == k) || (k == 0)) {
return 0;
}
if ((k == 1) || (k == n - 1)) {
return Math.log((double) n);
}
double logSum = 0;
// n!/k!
for (int i = k + 1; i <= n; i++) {
logSum += Math.log((double) i);
}
// divide by (n-k)!
for (int i = 2; i <= n - k; i++) {
logSum -= Math.log((double) i);
}
return logSum;
}
/**
* Returns <code>n</code>
* <a href="http://mathworld.wolfram.com/Factorial.html">
* Factorial</a>, or <code>n!</code>,
* the product of the numbers <code>1,...,n</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>long</code>. The
* largest value of <code>n</code> for which <code>n!</code>
* < Long.MAX_VALUE</code> is 20. If the computed value
* exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
* </code> is thrown.</li>
* </ul>
*
* @param n argument
* @return <code>n!</code>
*/
public static long factorial(int n) {
long result = Math.round(factorialDouble(n));
if (result == Long.MAX_VALUE) {
throw new ArithmeticException
("result too large to represent in a long integer");
}
return result;
}
/**
* Returns <code>n</code>
* <a href="http://mathworld.wolfram.com/Factorial.html">
* Factorial</a>, or <code>n!</code>,
* the product of the numbers <code>1,...,n</code>, as as
* <code>double</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>double</code>. The
* largest value of <code>n</code> for which <code>n!</code>
* < Double.MAX_VALUE</code> is 170. If the computed value exceeds
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
* </ul>
*
* @param n argument
* @return <code>n!</code>
*/
public static double factorialDouble(int n) {
if (n <= 0) {
throw new IllegalArgumentException
("must have n > 0 for n!");
}
return Math.floor(Math.exp(factorialLog(n)) + 0.5);
}
/**
* Returns the natural <code>log</code> of <code>n</code>
* <a href="http://mathworld.wolfram.com/Factorial.html">
* Factorial</a>, or <code>n!</code>,
* the product of the numbers <code>1,...,n</code>, as as
* <code>double</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
* <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul>
*
* @param n argument
* @return <code>n!</code>
*/
public static double factorialLog(int n) {
if (n <= 0) {
throw new IllegalArgumentException
("must have n > 0 for n!");
}
double logSum = 0;
for (int i = 2; i <= n; i++) {
logSum += Math.log((double) i);
}
return logSum;
}
}

View File

@ -0,0 +1,319 @@
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowlegement may appear in the software itself,
* if and wherever such third-party acknowlegements normally appear.
*
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
package org.apache.commons.math;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;
import junit.framework.AssertionFailedError;
/**
* Test cases for the MathUtils class.
*
* @author Phil Steitz
* @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:14 $
*/
public final class MathUtilsTest extends TestCase {
public MathUtilsTest(String name) {
super(name);
}
public void setUp() {
}
public static Test suite() {
TestSuite suite = new TestSuite(MathUtilsTest.class);
suite.setName("MathUtils Tests");
return suite;
}
public void testBinomialCoefficient() {
long[] bcoef5 = {1,5,10,10,5,1};
long[] bcoef6 = {1,6,15,20,15,6,1};
for (int i = 0; i < 6; i++) {
assertEquals("5 choose " + i, bcoef5[i],
MathUtils.binomialCoefficient(5,i));
}
for (int i = 0; i < 7; i++) {
assertEquals("6 choose " + i, bcoef6[i],
MathUtils.binomialCoefficient(6,i));
}
for (int n = 1; n < 10; n++) {
for (int k = 0; k <= n; k++) {
assertEquals(n + " choose " + k, binomialCoefficient(n, k),
MathUtils.binomialCoefficient(n, k));
assertEquals(n + " choose " + k,(double) binomialCoefficient(n, k),
MathUtils.binomialCoefficientDouble(n, k),Double.MIN_VALUE);
assertEquals(n + " choose " + k,
Math.log((double) binomialCoefficient(n, k)),
MathUtils.binomialCoefficientLog(n, k),10E-12);
}
}
/*
* Takes a long time for recursion to unwind, but succeeds
* and yields exact value = 2,333,606,220
assertEquals(MathUtils.binomialCoefficient(34,17),
binomialCoefficient(34,17));
*/
}
public void testBinomialCoefficientFail() {
try {
long x = MathUtils.binomialCoefficient(0,0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
long x = MathUtils.binomialCoefficient(4,5);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.binomialCoefficientDouble(0,0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.binomialCoefficientDouble(4,5);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.binomialCoefficientLog(0,0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.binomialCoefficientLog(4,5);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
long x = MathUtils.binomialCoefficient(67,34);
fail ("expecting ArithmeticException");
} catch (ArithmeticException ex) {
;
}
double x = MathUtils.binomialCoefficientDouble(1030,515);
assertTrue("expecting infinite binomial coefficient",
Double.isInfinite(x));
}
public void testFactorial() {
for (int i = 1; i < 10; i++) {
assertEquals(i + "! ",factorial(i),MathUtils.factorial(i));
assertEquals(i + "! ",(double)factorial(i),
MathUtils.factorialDouble(i),Double.MIN_VALUE);
assertEquals(i + "! ",Math.log((double)factorial(i)),
MathUtils.factorialLog(i),10E-12);
}
}
public void testFactorialFail() {
try {
long x = MathUtils.factorial(0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.factorialDouble(0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.factorialLog(0);
fail ("expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
;
}
try {
double x = MathUtils.factorial(21);
fail ("expecting ArithmeticException");
} catch (ArithmeticException ex) {
;
}
assertTrue("expecting infinite factorial value",
Double.isInfinite(MathUtils.factorialDouble(171)));
}
/**
* Exact recursive implementation to test against
*/
private long binomialCoefficient(int n, int k) {
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
return binomialCoefficient(n - 1, k - 1) +
binomialCoefficient(n - 1, k);
}
/**
* Finds the largest values of n for which binomialCoefficient and
* binomialCoefficientDouble will return values that fit in a long, double,
* resp. Remove comments around test below to get this in test-report
*
public void testLimits() {
findBinomialLimits();
}
*/
private void findBinomialLimits() {
/**
* will kick out 66 as the limit for long
*/
boolean foundLimit = false;
int test = 10;
while (!foundLimit) {
try {
double x = MathUtils.binomialCoefficient(test, test / 2);
} catch (ArithmeticException ex) {
foundLimit = true;
System.out.println
("largest n for binomialCoefficient = " + (test - 1) );
}
test++;
}
/**
* will kick out 1029 as the limit for double
*/
foundLimit = false;
test = 10;
while (!foundLimit) {
double x = MathUtils.binomialCoefficientDouble(test, test / 2);
if (Double.isInfinite(x)) {
foundLimit = true;
System.out.println
("largest n for binomialCoefficientD = " + (test - 1) );
}
test++;
}
}
/**
* Finds the largest values of n for which factiorial and
* factorialDouble will return values that fit in a long, double,
* resp. Remove comments around test below to get this in test-report
public void testFactiorialLimits() {
findFactorialLimits();
}
*/
private void findFactorialLimits() {
/**
* will kick out 20 as the limit for long
*/
boolean foundLimit = false;
int test = 10;
while (!foundLimit) {
try {
double x = MathUtils.factorial(test);
} catch (ArithmeticException ex) {
foundLimit = true;
System.out.println
("largest n for factorial = " + (test - 1) );
}
test++;
}
/**
* will kick out 170 as the limit for double
*/
foundLimit = false;
test = 10;
while (!foundLimit) {
double x = MathUtils.factorialDouble(test);
if (Double.isInfinite(x)) {
foundLimit = true;
System.out.println
("largest n for factorialDouble = " + (test - 1) );
}
test++;
}
}
/**
* Exact direct multiplication implementation to test against
*/
private long factorial(int n) {
long result = 1;
for (int i = 2; i <= n; i++) {
result *= i;
}
return result;
}
}