Changed return type of nthRoot to List

Renamed getPhi to getArgument
Changed and documented behavior of nthRoot wrt NaN, infinite components
Improved nth root computation
Added some test cases

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@731822 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-01-06 03:46:29 +00:00
parent 34bc1eed72
commit 4564adbf19
2 changed files with 124 additions and 40 deletions

View File

@ -19,7 +19,7 @@ package org.apache.commons.math.complex;
import java.io.Serializable; import java.io.Serializable;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.Collection; import java.util.List;
import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.util.MathUtils; import org.apache.commons.math.util.MathUtils;
@ -867,50 +867,76 @@ public class Complex implements Serializable {
/** /**
* Compute the angle phi of this complex number. * <p>Compute the argument of this complex number.
* @return the angle phi of this complex number * </p>
* <p>The argument is the angle phi between the positive real axis and the point
* representing this number in the complex plane. The value returned is between -PI (not inclusive)
* and PI (inclusive), with negative values returned for numbers with negative imaginary parts.
* </p>
* <p>If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled
* as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of
* an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite
* parts. See the javadoc for java.Math.atan2 for full details.</p>
*
* @return the argument of this complex number
*/ */
public double getPhi() { public double getArgument() {
return Math.atan2(getImaginary(), getReal()); return Math.atan2(getImaginary(), getReal());
} }
/** /**
* Compute the n-th root of this complex number. * <p>Computes the n-th roots of this complex number.
* <p> * </p>
* For a given n it implements the formula: <pre> * <p>The nth roots are defined by the formula: <pre>
* <code> z_k = pow( abs , 1.0/n ) * (cos(phi + k * 2&pi;) + i * (sin(phi + k * 2&pi;)</code></pre></p> * <code> z<sub>k</sub> = abs<sup> 1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 2&pi;k/n))</code></pre>
* with <i><code>k=0, 1, ..., n-1</code></i> and <i><code>pow(abs, 1.0 / n)</code></i> is the nth root of the absolute-value. * for <i><code>k=0, 1, ..., n-1</code></i>, where <code>abs</code> and <code>phi</code> are
* <p> * respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
* </p>
* <p>If one or both parts of this complex number is NaN, a list with just one element,
* {@link #NaN} is returned.</p>
* <p>if neither part is NaN, but at least one part is infinite, the result is a one-element
* list containing {@link #INF}.</p>
* *
* @param n degree of root * @param n degree of root
* @return Collection<Complex> all nth roots of this complex number as a Collection * @return List<Complex> all nth roots of this complex number
* @throws IllegalArgumentException if parameter n is negative * @throws IllegalArgumentException if parameter n is less than or equal to 0
* @since 2.0 * @since 2.0
*/ */
public Collection<Complex> nthRoot(int n) throws IllegalArgumentException { public List<Complex> nthRoot(int n) throws IllegalArgumentException {
if (n <= 0) { if (n <= 0) {
throw MathRuntimeException.createIllegalArgumentException("cannot compute nth root for null or negative n: {0}", throw MathRuntimeException.createIllegalArgumentException("cannot compute nth root for null or negative n: {0}",
new Object[] { n }); new Object[] { n });
} }
Collection<Complex> result = new ArrayList<Complex>(); List<Complex> result = new ArrayList<Complex>();
// nth root of abs if (isNaN()) {
result.add(Complex.NaN);
return result;
}
if (isInfinite()) {
result.add(Complex.INF);
return result;
}
// nth root of abs -- faster / more accurate to use a solver here?
final double nthRootOfAbs = Math.pow(abs(), 1.0 / n); final double nthRootOfAbs = Math.pow(abs(), 1.0 / n);
// Compute nth roots of complex number with k = 0, 1, ... n-1 // Compute nth roots of complex number with k = 0, 1, ... n-1
final double phi = getPhi(); final double nthPhi = getArgument()/n;
final double slice = 2 * Math.PI / n;
double innerPart = nthPhi;
for (int k = 0; k < n ; k++) { for (int k = 0; k < n ; k++) {
// inner part // inner part
final double innerPart = (phi + k * 2 * Math.PI) / n;
final double realPart = nthRootOfAbs * Math.cos(innerPart); final double realPart = nthRootOfAbs * Math.cos(innerPart);
final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart); final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart);
result.add(createComplex(realPart, imaginaryPart)); result.add(createComplex(realPart, imaginaryPart));
innerPart += slice;
} }
return result; return result;
} }
/** /**

View File

@ -19,6 +19,8 @@ package org.apache.commons.math.complex;
import org.apache.commons.math.TestUtils; import org.apache.commons.math.TestUtils;
import java.util.List;
import junit.framework.TestCase; import junit.framework.TestCase;
/** /**
@ -801,7 +803,7 @@ public class ComplexTest extends TestCase {
* </code> * </code>
* </pre> * </pre>
*/ */
public void testNthRoot_cornercase_thirdRoot_realPartEmpty() { public void testNthRoot_cornercase_thirdRoot_realPartZero() {
// complex number with only imaginary part // complex number with only imaginary part
Complex z = new Complex(0,2); Complex z = new Complex(0,2);
// The List holding all third roots // The List holding all third roots
@ -823,26 +825,82 @@ public class ComplexTest extends TestCase {
* Test cornercases with NaN and Infinity. * Test cornercases with NaN and Infinity.
*/ */
public void testNthRoot_cornercase_NAN_Inf() { public void testNthRoot_cornercase_NAN_Inf() {
// third root of z = 1 + NaN * i // NaN + finite -> NaN
for (Complex c : oneNaN.nthRoot(3)) { List<Complex> roots = oneNaN.nthRoot(3);
// both parts should be nan assertEquals(1,roots.size());
assertEquals(nan, c.getReal()); assertEquals(Complex.NaN, roots.get(0));
assertEquals(nan, c.getImaginary());
} roots = nanZero.nthRoot(3);
// third root of z = inf + NaN * i assertEquals(1,roots.size());
for (Complex c : infNaN.nthRoot(3)) { assertEquals(Complex.NaN, roots.get(0));
// both parts should be nan
assertEquals(nan, c.getReal()); // NaN + infinite -> NaN
assertEquals(nan, c.getImaginary()); roots = nanInf.nthRoot(3);
} assertEquals(1,roots.size());
// third root of z = neginf + 1 * i assertEquals(Complex.NaN, roots.get(0));
Complex[] zInfOne = negInfOne.nthRoot(2).toArray(new Complex[0]);
// first root // finite + infinite -> Inf
assertEquals(inf, zInfOne[0].getReal()); roots = oneInf.nthRoot(3);
assertEquals(inf, zInfOne[0].getImaginary()); assertEquals(1,roots.size());
// second root assertEquals(Complex.INF, roots.get(0));
assertEquals(neginf, zInfOne[1].getReal());
assertEquals(neginf, zInfOne[1].getImaginary()); // infinite + infinite -> Inf
roots = negInfInf.nthRoot(3);
assertEquals(1,roots.size());
assertEquals(Complex.INF, roots.get(0));
}
/**
* Test standard values
*/
public void testGetArgument() {
Complex z = new Complex(1, 0);
assertEquals(0.0, z.getArgument(), 1.0e-12);
z = new Complex(1, 1);
assertEquals(Math.PI/4, z.getArgument(), 1.0e-12);
z = new Complex(0, 1);
assertEquals(Math.PI/2, z.getArgument(), 1.0e-12);
z = new Complex(-1, 1);
assertEquals(3 * Math.PI/4, z.getArgument(), 1.0e-12);
z = new Complex(-1, 0);
assertEquals(Math.PI, z.getArgument(), 1.0e-12);
z = new Complex(-1, -1);
assertEquals(-3 * Math.PI/4, z.getArgument(), 1.0e-12);
z = new Complex(0, -1);
assertEquals(-Math.PI/2, z.getArgument(), 1.0e-12);
z = new Complex(1, -1);
assertEquals(-Math.PI/4, z.getArgument(), 1.0e-12);
}
/**
* Verify atan2-style handling of infinite parts
*/
public void testGetArgumentInf() {
assertEquals(Math.PI/4, infInf.getArgument(), 1.0e-12);
assertEquals(Math.PI/2, oneInf.getArgument(), 1.0e-12);
assertEquals(0.0, infOne.getArgument(), 1.0e-12);
assertEquals(Math.PI/2, zeroInf.getArgument(), 1.0e-12);
assertEquals(0.0, infZero.getArgument(), 1.0e-12);
assertEquals(Math.PI, negInfOne.getArgument(), 1.0e-12);
assertEquals(-3.0*Math.PI/4, negInfNegInf.getArgument(), 1.0e-12);
assertEquals(-Math.PI/2, oneNegInf.getArgument(), 1.0e-12);
}
/**
* Verify that either part NaN results in NaN
*/
public void testGetArgumentNaN() {
assertEquals(nan, nanZero.getArgument());
assertEquals(nan, zeroNaN.getArgument());
assertEquals(nan, Complex.NaN.getArgument());
} }
} }