MATH-1601: Simplified and more robust API.
Factory methods ensure correct use (removed dependency on "NormalizedRandomGenerator").
This commit is contained in:
parent
8afd815000
commit
456de1bf98
|
@ -29,7 +29,7 @@ import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
|
|||
* is that rows/columns may be permuted (hence the rectangular shape instead
|
||||
* of the traditional triangular shape) and there is a threshold to ignore
|
||||
* small diagonal elements. This is used for example to generate {@link
|
||||
* org.apache.commons.math4.legacy.random.CorrelatedRandomVectorGenerator correlated
|
||||
* org.apache.commons.math4.legacy.random.CorrelatedVectorFactory correlated
|
||||
* random n-dimensions vectors} in a p-dimension subspace (p < n).
|
||||
* In other words, it allows generating random vectors from a covariance
|
||||
* matrix that is only positive semidefinite, and not positive definite.</p>
|
||||
|
|
|
@ -1,184 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.legacy.random;
|
||||
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math4.legacy.linear.RealMatrix;
|
||||
import org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition;
|
||||
|
||||
/**
|
||||
* Generates vectors with with correlated components.
|
||||
*
|
||||
* <p>Random vectors with correlated components are built by combining
|
||||
* the uncorrelated components of another random vector in such a way that
|
||||
* the resulting correlations are the ones specified by a positive
|
||||
* definite covariance matrix.</p>
|
||||
* <p>The main use for correlated random vector generation is for Monte-Carlo
|
||||
* simulation of physical problems with several variables, for example to
|
||||
* generate error vectors to be added to a nominal vector. A particularly
|
||||
* interesting case is when the generated vector should be drawn from a <a
|
||||
* href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
|
||||
* Multivariate Normal Distribution</a>. The approach using a Cholesky
|
||||
* decomposition is quite usual in this case. However, it can be extended
|
||||
* to other cases as long as the underlying random generator provides
|
||||
* {@link NormalizedRandomGenerator normalized values} like
|
||||
* {@link UniformRandomGenerator}.</p>
|
||||
* <p>Sometimes, the covariance matrix for a given simulation is not
|
||||
* strictly positive definite. This means that the correlations are
|
||||
* not all independent from each other. In this case, however, the non
|
||||
* strictly positive elements found during the Cholesky decomposition
|
||||
* of the covariance matrix should not be negative either, they
|
||||
* should be null. Another non-conventional extension handling this case
|
||||
* is used here. Rather than computing <code>C = U<sup>T</sup>.U</code>
|
||||
* where <code>C</code> is the covariance matrix and <code>U</code>
|
||||
* is an upper-triangular matrix, we compute <code>C = B.B<sup>T</sup></code>
|
||||
* where <code>B</code> is a rectangular matrix having
|
||||
* more rows than columns. The number of columns of <code>B</code> is
|
||||
* the rank of the covariance matrix, and it is the dimension of the
|
||||
* uncorrelated random vector that is needed to compute the component
|
||||
* of the correlated vector. This class handles this situation
|
||||
* automatically.</p>
|
||||
*
|
||||
* @since 1.2
|
||||
*/
|
||||
|
||||
public class CorrelatedRandomVectorGenerator implements Supplier<double[]> {
|
||||
/** Mean vector. */
|
||||
private final double[] mean;
|
||||
/** Underlying generator. */
|
||||
private final NormalizedRandomGenerator generator;
|
||||
/** Storage for the normalized vector. */
|
||||
private final double[] normalized;
|
||||
/** Root of the covariance matrix. */
|
||||
private final RealMatrix root;
|
||||
|
||||
/**
|
||||
* Builds a correlated random vector generator from its mean
|
||||
* vector and covariance matrix.
|
||||
*
|
||||
* @param mean Expected mean values for all components.
|
||||
* @param covariance Covariance matrix.
|
||||
* @param small Diagonal elements threshold under which column are
|
||||
* considered to be dependent on previous ones and are discarded
|
||||
* @param generator underlying generator for uncorrelated normalized
|
||||
* components.
|
||||
* @throws org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
|
||||
* if the covariance matrix is not strictly positive definite.
|
||||
* @throws DimensionMismatchException if the mean and covariance
|
||||
* arrays dimensions do not match.
|
||||
*/
|
||||
public CorrelatedRandomVectorGenerator(double[] mean,
|
||||
RealMatrix covariance, double small,
|
||||
NormalizedRandomGenerator generator) {
|
||||
int order = covariance.getRowDimension();
|
||||
if (mean.length != order) {
|
||||
throw new DimensionMismatchException(mean.length, order);
|
||||
}
|
||||
this.mean = mean.clone();
|
||||
|
||||
final RectangularCholeskyDecomposition decomposition =
|
||||
new RectangularCholeskyDecomposition(covariance, small);
|
||||
root = decomposition.getRootMatrix();
|
||||
|
||||
this.generator = generator;
|
||||
normalized = new double[decomposition.getRank()];
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a null mean random correlated vector generator from its
|
||||
* covariance matrix.
|
||||
*
|
||||
* @param covariance Covariance matrix.
|
||||
* @param small Diagonal elements threshold under which column are
|
||||
* considered to be dependent on previous ones and are discarded.
|
||||
* @param generator Underlying generator for uncorrelated normalized
|
||||
* components.
|
||||
* @throws org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
|
||||
* if the covariance matrix is not strictly positive definite.
|
||||
*/
|
||||
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
|
||||
NormalizedRandomGenerator generator) {
|
||||
int order = covariance.getRowDimension();
|
||||
mean = new double[order];
|
||||
for (int i = 0; i < order; ++i) {
|
||||
mean[i] = 0;
|
||||
}
|
||||
|
||||
final RectangularCholeskyDecomposition decomposition =
|
||||
new RectangularCholeskyDecomposition(covariance, small);
|
||||
root = decomposition.getRootMatrix();
|
||||
|
||||
this.generator = generator;
|
||||
normalized = new double[decomposition.getRank()];
|
||||
|
||||
}
|
||||
|
||||
/** Get the underlying normalized components generator.
|
||||
* @return underlying uncorrelated components generator
|
||||
*/
|
||||
public NormalizedRandomGenerator getGenerator() {
|
||||
return generator;
|
||||
}
|
||||
|
||||
/** Get the rank of the covariance matrix.
|
||||
* The rank is the number of independent rows in the covariance
|
||||
* matrix, it is also the number of columns of the root matrix.
|
||||
* @return rank of the square matrix.
|
||||
* @see #getRootMatrix()
|
||||
*/
|
||||
public int getRank() {
|
||||
return normalized.length;
|
||||
}
|
||||
|
||||
/** Get the root of the covariance matrix.
|
||||
* The root is the rectangular matrix <code>B</code> such that
|
||||
* the covariance matrix is equal to <code>B.B<sup>T</sup></code>
|
||||
* @return root of the square matrix
|
||||
* @see #getRank()
|
||||
*/
|
||||
public RealMatrix getRootMatrix() {
|
||||
return root;
|
||||
}
|
||||
|
||||
/** Generate a correlated random vector.
|
||||
* @return a random vector as an array of double. The returned array
|
||||
* is created at each call, the caller can do what it wants with it.
|
||||
*/
|
||||
@Override
|
||||
public double[] get() {
|
||||
// generate uncorrelated vector
|
||||
for (int i = 0; i < normalized.length; ++i) {
|
||||
normalized[i] = generator.nextNormalizedDouble();
|
||||
}
|
||||
|
||||
// compute correlated vector
|
||||
double[] correlated = new double[mean.length];
|
||||
for (int i = 0; i < correlated.length; ++i) {
|
||||
correlated[i] = mean[i];
|
||||
for (int j = 0; j < root.getColumnDimension(); ++j) {
|
||||
correlated[i] += root.getEntry(i, j) * normalized[j];
|
||||
}
|
||||
}
|
||||
|
||||
return correlated;
|
||||
|
||||
}
|
||||
}
|
|
@ -0,0 +1,163 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.legacy.random;
|
||||
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
|
||||
import org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
|
||||
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler;
|
||||
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
|
||||
import org.apache.commons.math4.legacy.linear.RealMatrix;
|
||||
import org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition;
|
||||
|
||||
/**
|
||||
* Generates vectors with with correlated components.
|
||||
*
|
||||
* <p>Random vectors with correlated components are built by combining
|
||||
* the uncorrelated components of another random vector in such a way
|
||||
* that the resulting correlations are the ones specified by a positive
|
||||
* definite covariance matrix.</p>
|
||||
*
|
||||
* <p>The main use of correlated random vector generation is for Monte-Carlo
|
||||
* simulation of physical problems with several variables (for example to
|
||||
* generate error vectors to be added to a nominal vector). A particularly
|
||||
* common case is when the generated vector should be drawn from a
|
||||
* <a href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
|
||||
* Multivariate Normal Distribution</a>, usually using Cholesky decomposition.
|
||||
* Other distributions are possible as long as the underlying sampler provides
|
||||
* normalized values (unit standard deviation).</p>
|
||||
*
|
||||
* <p>Sometimes, the covariance matrix for a given simulation is not
|
||||
* strictly positive definite. This means that the correlations are
|
||||
* not all independent from each other. In this case, however, the non
|
||||
* strictly positive elements found during the Cholesky decomposition
|
||||
* of the covariance matrix should not be negative either, they
|
||||
* should be null. Another non-conventional extension handling this case
|
||||
* is used here. Rather than computing <code>C = U<sup>T</sup> U</code>
|
||||
* where <code>C</code> is the covariance matrix and <code>U</code>
|
||||
* is an upper-triangular matrix, we compute <code>C = B B<sup>T</sup></code>
|
||||
* where <code>B</code> is a rectangular matrix having more rows than
|
||||
* columns. The number of columns of <code>B</code> is the rank of the
|
||||
* covariance matrix, and it is the dimension of the uncorrelated
|
||||
* random vector that is needed to compute the component of the
|
||||
* correlated vector. This class handles this situation automatically.</p>
|
||||
*/
|
||||
public class CorrelatedVectorFactory {
|
||||
/** Square root of three. */
|
||||
private static final double SQRT3 = AccurateMath.sqrt(3);
|
||||
/** Mean vector. */
|
||||
private final double[] mean;
|
||||
/** Root of the covariance matrix. */
|
||||
private final RealMatrix root;
|
||||
/** Size of uncorrelated vector. */
|
||||
private final int lengthUncorrelated;
|
||||
/** Size of correlated vector. */
|
||||
private final int lengthCorrelated;
|
||||
|
||||
/**
|
||||
* Correlated vector factory.
|
||||
*
|
||||
* @param mean Expected mean values of the components.
|
||||
* @param covariance Covariance matrix.
|
||||
* @param small Diagonal elements threshold under which columns are
|
||||
* considered to be dependent on previous ones and are discarded.
|
||||
* @throws org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
|
||||
* if the covariance matrix is not strictly positive definite.
|
||||
* @throws DimensionMismatchException if the mean and covariance
|
||||
* arrays dimensions do not match.
|
||||
*/
|
||||
public CorrelatedVectorFactory(double[] mean,
|
||||
RealMatrix covariance,
|
||||
double small) {
|
||||
lengthCorrelated = covariance.getRowDimension();
|
||||
if (mean.length != lengthCorrelated) {
|
||||
throw new DimensionMismatchException(mean.length, lengthCorrelated);
|
||||
}
|
||||
this.mean = mean.clone();
|
||||
|
||||
final RectangularCholeskyDecomposition decomposition
|
||||
= new RectangularCholeskyDecomposition(covariance, small);
|
||||
root = decomposition.getRootMatrix();
|
||||
|
||||
lengthUncorrelated = decomposition.getRank();
|
||||
}
|
||||
|
||||
/**
|
||||
* Null mean correlated vector factory.
|
||||
*
|
||||
* @param covariance Covariance matrix.
|
||||
* @param small Diagonal elements threshold under which columns are
|
||||
* considered to be dependent on previous ones and are discarded.
|
||||
* @throws org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
|
||||
* if the covariance matrix is not strictly positive definite.
|
||||
*/
|
||||
public CorrelatedVectorFactory(RealMatrix covariance,
|
||||
double small) {
|
||||
this(new double[covariance.getRowDimension()],
|
||||
covariance,
|
||||
small);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param rng RNG.
|
||||
* @return a generator of vectors with correlated components sampled
|
||||
* from a uniform distribution.
|
||||
*/
|
||||
public Supplier<double[]> uniform(UniformRandomProvider rng) {
|
||||
return with(new ContinuousUniformSampler(rng, -SQRT3, SQRT3));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param rng RNG.
|
||||
* @return a generator of vectors with correlated components sampled
|
||||
* from a normal distribution.
|
||||
*/
|
||||
public Supplier<double[]> gaussian(UniformRandomProvider rng) {
|
||||
return with(new ZigguratNormalizedGaussianSampler(rng));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param sampler Generator of samples from a normalized distribution.
|
||||
* @return a generator of vectors with correlated components.
|
||||
*/
|
||||
private Supplier<double[]> with(final ContinuousSampler sampler) {
|
||||
return new Supplier<double[]>() {
|
||||
@Override
|
||||
public double[] get() {
|
||||
// Uncorrelated vector.
|
||||
final double[] uncorrelated = new double[lengthUncorrelated];
|
||||
for (int i = 0; i < lengthUncorrelated; i++) {
|
||||
uncorrelated[i] = sampler.sample();
|
||||
}
|
||||
|
||||
// Correlated vector.
|
||||
final double[] correlated = mean.clone();
|
||||
for (int i = 0; i < correlated.length; i++) {
|
||||
for (int j = 0; j < lengthUncorrelated; j++) {
|
||||
correlated[i] += root.getEntry(i, j) * uncorrelated[j];
|
||||
}
|
||||
}
|
||||
|
||||
return correlated;
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
|
@ -1,208 +0,0 @@
|
|||
//Licensed to the Apache Software Foundation (ASF) under one
|
||||
//or more contributor license agreements. See the NOTICE file
|
||||
//distributed with this work for additional information
|
||||
//regarding copyright ownership. The ASF licenses this file
|
||||
//to you under the Apache License, Version 2.0 (the
|
||||
//"License"); you may not use this file except in compliance
|
||||
//with the License. You may obtain a copy of the License at
|
||||
|
||||
//http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
//Unless required by applicable law or agreed to in writing,
|
||||
//software distributed under the License is distributed on an
|
||||
//"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
//KIND, either express or implied. See the License for the
|
||||
//specific language governing permissions and limitations
|
||||
//under the License.
|
||||
|
||||
package org.apache.commons.math4.legacy.random;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math4.legacy.TestUtils;
|
||||
import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
|
||||
import org.apache.commons.math4.legacy.linear.MatrixUtils;
|
||||
import org.apache.commons.math4.legacy.linear.RealMatrix;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler;
|
||||
import org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance;
|
||||
import org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance;
|
||||
import org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean;
|
||||
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
|
||||
import org.junit.Test;
|
||||
import org.junit.Assert;
|
||||
|
||||
public class CorrelatedRandomVectorGeneratorTest {
|
||||
private double[] mean;
|
||||
private RealMatrix covariance;
|
||||
private CorrelatedRandomVectorGenerator generator;
|
||||
|
||||
public CorrelatedRandomVectorGeneratorTest() {
|
||||
mean = new double[] { 0.0, 1.0, -3.0, 2.3 };
|
||||
|
||||
RealMatrix b = MatrixUtils.createRealMatrix(4, 3);
|
||||
int counter = 0;
|
||||
for (int i = 0; i < b.getRowDimension(); ++i) {
|
||||
for (int j = 0; j < b.getColumnDimension(); ++j) {
|
||||
b.setEntry(i, j, 1.0 + 0.1 * ++counter);
|
||||
}
|
||||
}
|
||||
RealMatrix bbt = b.multiply(b.transpose());
|
||||
covariance = MatrixUtils.createRealMatrix(mean.length, mean.length);
|
||||
for (int i = 0; i < covariance.getRowDimension(); ++i) {
|
||||
covariance.setEntry(i, i, bbt.getEntry(i, i));
|
||||
for (int j = 0; j < covariance.getColumnDimension(); ++j) {
|
||||
double s = bbt.getEntry(i, j);
|
||||
covariance.setEntry(i, j, s);
|
||||
covariance.setEntry(j, i, s);
|
||||
}
|
||||
}
|
||||
|
||||
generator = new CorrelatedRandomVectorGenerator(mean,
|
||||
covariance,
|
||||
1e-12 * covariance.getNorm(),
|
||||
gaussianRandom(RandomSource.create(RandomSource.WELL_1024_A)));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRank() {
|
||||
Assert.assertEquals(2, generator.getRank());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMath226() {
|
||||
double[] mean = { 1, 1, 10, 1 };
|
||||
double[][] cov = {
|
||||
{ 1, 3, 2, 6 },
|
||||
{ 3, 13, 16, 2 },
|
||||
{ 2, 16, 38, -1 },
|
||||
{ 6, 2, -1, 197 }
|
||||
};
|
||||
RealMatrix covRM = MatrixUtils.createRealMatrix(cov);
|
||||
CorrelatedRandomVectorGenerator sg =
|
||||
new CorrelatedRandomVectorGenerator(mean, covRM, 0.00001,
|
||||
gaussianRandom(RandomSource.create(RandomSource.WELL_1024_A)));
|
||||
|
||||
double[] min = new double[mean.length];
|
||||
Arrays.fill(min, Double.POSITIVE_INFINITY);
|
||||
double[] max = new double[mean.length];
|
||||
Arrays.fill(max, Double.NEGATIVE_INFINITY);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
double[] generated = sg.get();
|
||||
for (int j = 0; j < generated.length; ++j) {
|
||||
min[j] = AccurateMath.min(min[j], generated[j]);
|
||||
max[j] = AccurateMath.max(max[j], generated[j]);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < min.length; ++j) {
|
||||
Assert.assertTrue(max[j] - min[j] > 2.0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRootMatrix() {
|
||||
RealMatrix b = generator.getRootMatrix();
|
||||
RealMatrix bbt = b.multiply(b.transpose());
|
||||
for (int i = 0; i < covariance.getRowDimension(); ++i) {
|
||||
for (int j = 0; j < covariance.getColumnDimension(); ++j) {
|
||||
Assert.assertEquals(covariance.getEntry(i, j), bbt.getEntry(i, j), 1.0e-12);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMeanAndCovariance() {
|
||||
|
||||
VectorialMean meanStat = new VectorialMean(mean.length);
|
||||
VectorialCovariance covStat = new VectorialCovariance(mean.length, true);
|
||||
for (int i = 0; i < 5000; ++i) {
|
||||
double[] v = generator.get();
|
||||
meanStat.increment(v);
|
||||
covStat.increment(v);
|
||||
}
|
||||
|
||||
double[] estimatedMean = meanStat.getResult();
|
||||
RealMatrix estimatedCovariance = covStat.getResult();
|
||||
for (int i = 0; i < estimatedMean.length; ++i) {
|
||||
Assert.assertEquals(mean[i], estimatedMean[i], 0.07);
|
||||
for (int j = 0; j <= i; ++j) {
|
||||
Assert.assertEquals(covariance.getEntry(i, j),
|
||||
estimatedCovariance.getEntry(i, j),
|
||||
0.1 * (1.0 + AccurateMath.abs(mean[i])) * (1.0 + AccurateMath.abs(mean[j])));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSampleWithZeroCovariance() {
|
||||
final double[][] covMatrix1 = new double[][]{
|
||||
{0.013445532, 0.010394690, 0.009881156, 0.010499559},
|
||||
{0.010394690, 0.023006616, 0.008196856, 0.010732709},
|
||||
{0.009881156, 0.008196856, 0.019023866, 0.009210099},
|
||||
{0.010499559, 0.010732709, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
final double[][] covMatrix2 = new double[][]{
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0},
|
||||
{0.0, 0.013445532, 0.010394690, 0.009881156, 0.010499559},
|
||||
{0.0, 0.010394690, 0.023006616, 0.008196856, 0.010732709},
|
||||
{0.0, 0.009881156, 0.008196856, 0.019023866, 0.009210099},
|
||||
{0.0, 0.010499559, 0.010732709, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
final double[][] covMatrix3 = new double[][]{
|
||||
{0.013445532, 0.010394690, 0.0, 0.009881156, 0.010499559},
|
||||
{0.010394690, 0.023006616, 0.0, 0.008196856, 0.010732709},
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0},
|
||||
{0.009881156, 0.008196856, 0.0, 0.019023866, 0.009210099},
|
||||
{0.010499559, 0.010732709, 0.0, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
testSampler(covMatrix1, 10000, 0.001);
|
||||
testSampler(covMatrix2, 10000, 0.001);
|
||||
testSampler(covMatrix3, 10000, 0.001);
|
||||
|
||||
}
|
||||
|
||||
private CorrelatedRandomVectorGenerator createSampler(double[][] cov) {
|
||||
RealMatrix matrix = new Array2DRowRealMatrix(cov);
|
||||
double small = 1e-12 * matrix.getNorm();
|
||||
return new CorrelatedRandomVectorGenerator(new double[cov.length],
|
||||
matrix,
|
||||
small,
|
||||
gaussianRandom(RandomSource.create(RandomSource.WELL_1024_A)));
|
||||
}
|
||||
|
||||
private void testSampler(final double[][] covMatrix, int samples, double epsilon) {
|
||||
CorrelatedRandomVectorGenerator sampler = createSampler(covMatrix);
|
||||
|
||||
StorelessCovariance cov = new StorelessCovariance(covMatrix.length);
|
||||
for (int i = 0; i < samples; ++i) {
|
||||
cov.increment(sampler.get());
|
||||
}
|
||||
|
||||
double[][] sampleCov = cov.getData();
|
||||
for (int r = 0; r < covMatrix.length; ++r) {
|
||||
TestUtils.assertEquals(covMatrix[r], sampleCov[r], epsilon);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param rng RNG.
|
||||
* @return a N(0,1) sampler.
|
||||
*/
|
||||
private NormalizedRandomGenerator gaussianRandom(final UniformRandomProvider rng) {
|
||||
final ZigguratNormalizedGaussianSampler n = new ZigguratNormalizedGaussianSampler(rng);
|
||||
|
||||
return new NormalizedRandomGenerator() {
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public double nextNormalizedDouble() {
|
||||
return n.sample();
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
|
@ -0,0 +1,172 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.legacy.random;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import org.junit.Test;
|
||||
import org.junit.Assert;
|
||||
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler;
|
||||
import org.apache.commons.math4.legacy.TestUtils;
|
||||
import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
|
||||
import org.apache.commons.math4.legacy.linear.MatrixUtils;
|
||||
import org.apache.commons.math4.legacy.linear.RealMatrix;
|
||||
import org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance;
|
||||
import org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance;
|
||||
import org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean;
|
||||
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
|
||||
|
||||
public class CorrelatedVectorFactoryTest {
|
||||
private double[] mean;
|
||||
private RealMatrix covariance;
|
||||
private Supplier<double[]> generator;
|
||||
|
||||
public CorrelatedVectorFactoryTest() {
|
||||
mean = new double[] { 0.0, 1.0, -3.0, 2.3 };
|
||||
|
||||
final RealMatrix b = MatrixUtils.createRealMatrix(4, 3);
|
||||
int counter = 0;
|
||||
for (int i = 0; i < b.getRowDimension(); ++i) {
|
||||
for (int j = 0; j < b.getColumnDimension(); ++j) {
|
||||
b.setEntry(i, j, 1.0 + 0.1 * ++counter);
|
||||
}
|
||||
}
|
||||
final RealMatrix bbt = b.multiply(b.transpose());
|
||||
covariance = MatrixUtils.createRealMatrix(mean.length, mean.length);
|
||||
for (int i = 0; i < covariance.getRowDimension(); ++i) {
|
||||
covariance.setEntry(i, i, bbt.getEntry(i, i));
|
||||
for (int j = 0; j < covariance.getColumnDimension(); ++j) {
|
||||
double s = bbt.getEntry(i, j);
|
||||
covariance.setEntry(i, j, s);
|
||||
covariance.setEntry(j, i, s);
|
||||
}
|
||||
}
|
||||
|
||||
generator = new CorrelatedVectorFactory(mean,
|
||||
covariance,
|
||||
1e-12 * covariance.getNorm())
|
||||
.gaussian(RandomSource.create(RandomSource.KISS));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMath226() {
|
||||
final double[] mean = { 1, 1, 10, 1 };
|
||||
final double[][] cov = {
|
||||
{ 1, 3, 2, 6 },
|
||||
{ 3, 13, 16, 2 },
|
||||
{ 2, 16, 38, -1 },
|
||||
{ 6, 2, -1, 197 }
|
||||
};
|
||||
final RealMatrix covRM = MatrixUtils.createRealMatrix(cov);
|
||||
final Supplier<double[]> sg = new CorrelatedVectorFactory(mean, covRM, 1e-5)
|
||||
.gaussian(RandomSource.create(RandomSource.WELL_1024_A));
|
||||
|
||||
final double[] min = new double[mean.length];
|
||||
Arrays.fill(min, Double.POSITIVE_INFINITY);
|
||||
final double[] max = new double[mean.length];
|
||||
Arrays.fill(max, Double.NEGATIVE_INFINITY);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
double[] generated = sg.get();
|
||||
for (int j = 0; j < generated.length; ++j) {
|
||||
min[j] = AccurateMath.min(min[j], generated[j]);
|
||||
max[j] = AccurateMath.max(max[j], generated[j]);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < min.length; ++j) {
|
||||
Assert.assertTrue(max[j] - min[j] > 2.0);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMeanAndCovariance() {
|
||||
final VectorialMean meanStat = new VectorialMean(mean.length);
|
||||
final VectorialCovariance covStat = new VectorialCovariance(mean.length, true);
|
||||
for (int i = 0; i < 5000; ++i) {
|
||||
final double[] v = generator.get();
|
||||
meanStat.increment(v);
|
||||
covStat.increment(v);
|
||||
}
|
||||
|
||||
final double[] estimatedMean = meanStat.getResult();
|
||||
final RealMatrix estimatedCovariance = covStat.getResult();
|
||||
for (int i = 0; i < estimatedMean.length; ++i) {
|
||||
Assert.assertEquals(mean[i], estimatedMean[i], 0.07);
|
||||
for (int j = 0; j <= i; ++j) {
|
||||
Assert.assertEquals(covariance.getEntry(i, j),
|
||||
estimatedCovariance.getEntry(i, j),
|
||||
1e-1 * (1 + AccurateMath.abs(mean[i])) * (1 + AccurateMath.abs(mean[j])));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSampleWithZeroCovariance() {
|
||||
final double[][] covMatrix1 = new double[][]{
|
||||
{0.013445532, 0.010394690, 0.009881156, 0.010499559},
|
||||
{0.010394690, 0.023006616, 0.008196856, 0.010732709},
|
||||
{0.009881156, 0.008196856, 0.019023866, 0.009210099},
|
||||
{0.010499559, 0.010732709, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
final double[][] covMatrix2 = new double[][]{
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0},
|
||||
{0.0, 0.013445532, 0.010394690, 0.009881156, 0.010499559},
|
||||
{0.0, 0.010394690, 0.023006616, 0.008196856, 0.010732709},
|
||||
{0.0, 0.009881156, 0.008196856, 0.019023866, 0.009210099},
|
||||
{0.0, 0.010499559, 0.010732709, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
final double[][] covMatrix3 = new double[][]{
|
||||
{0.013445532, 0.010394690, 0.0, 0.009881156, 0.010499559},
|
||||
{0.010394690, 0.023006616, 0.0, 0.008196856, 0.010732709},
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0},
|
||||
{0.009881156, 0.008196856, 0.0, 0.019023866, 0.009210099},
|
||||
{0.010499559, 0.010732709, 0.0, 0.009210099, 0.019107243}
|
||||
};
|
||||
|
||||
testSampler(covMatrix1, 10000, 1e-3);
|
||||
testSampler(covMatrix2, 10000, 1e-3);
|
||||
testSampler(covMatrix3, 10000, 1e-3);
|
||||
}
|
||||
|
||||
private Supplier<double[]> createSampler(double[][] cov) {
|
||||
final RealMatrix matrix = new Array2DRowRealMatrix(cov);
|
||||
final double small = 1e-12 * matrix.getNorm();
|
||||
return new CorrelatedVectorFactory(matrix, small)
|
||||
.gaussian(RandomSource.create(RandomSource.WELL_1024_A));
|
||||
}
|
||||
|
||||
private void testSampler(final double[][] covMatrix,
|
||||
int samples,
|
||||
double epsilon) {
|
||||
final Supplier<double[]> sampler = createSampler(covMatrix);
|
||||
|
||||
final StorelessCovariance cov = new StorelessCovariance(covMatrix.length);
|
||||
for (int i = 0; i < samples; ++i) {
|
||||
cov.increment(sampler.get());
|
||||
}
|
||||
|
||||
final double[][] sampleCov = cov.getData();
|
||||
for (int r = 0; r < covMatrix.length; ++r) {
|
||||
TestUtils.assertEquals(covMatrix[r], sampleCov[r], epsilon);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -16,22 +16,23 @@
|
|||
*/
|
||||
package org.apache.commons.math4.legacy.stat.regression;
|
||||
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import org.junit.Assert;
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.apache.commons.statistics.distribution.ContinuousDistribution;
|
||||
import org.apache.commons.statistics.distribution.NormalDistribution;
|
||||
import org.apache.commons.math4.legacy.TestUtils;
|
||||
import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math4.legacy.exception.NullArgumentException;
|
||||
import org.apache.commons.math4.legacy.linear.MatrixUtils;
|
||||
import org.apache.commons.math4.legacy.linear.RealMatrix;
|
||||
import org.apache.commons.math4.legacy.linear.RealVector;
|
||||
import org.apache.commons.math4.legacy.random.NormalizedRandomGenerator;
|
||||
import org.apache.commons.math4.legacy.random.CorrelatedRandomVectorGenerator;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler;
|
||||
import org.apache.commons.statistics.distribution.ContinuousDistribution;
|
||||
import org.apache.commons.statistics.distribution.NormalDistribution;
|
||||
import org.apache.commons.math4.legacy.random.CorrelatedVectorFactory;
|
||||
import org.apache.commons.math4.legacy.stat.correlation.Covariance;
|
||||
import org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics;
|
||||
|
||||
|
@ -246,11 +247,8 @@ public class GLSMultipleLinearRegressionTest extends MultipleLinearRegressionAbs
|
|||
RealMatrix cov = (new Covariance(errorSeeds)).getCovarianceMatrix();
|
||||
|
||||
// Create a CorrelatedRandomVectorGenerator to use to generate correlated errors
|
||||
double[] errorMeans = new double[nObs]; // Counting on init to 0 here
|
||||
CorrelatedRandomVectorGenerator gen
|
||||
= new CorrelatedRandomVectorGenerator(errorMeans, cov,
|
||||
1e-12 * cov.getNorm(),
|
||||
gaussianRandom(rg));
|
||||
final Supplier<double[]> gen
|
||||
= new CorrelatedVectorFactory(cov, 1e-12 * cov.getNorm()).gaussian(rg);
|
||||
|
||||
// Now start generating models. Use Longley X matrix on LHS
|
||||
// and Longley OLS beta vector as "true" beta. Generate
|
||||
|
@ -299,20 +297,4 @@ public class GLSMultipleLinearRegressionTest extends MultipleLinearRegressionAbs
|
|||
assert(olsBetaStats.getMean() > 1.5 * glsBetaStats.getMean());
|
||||
assert(olsBetaStats.getStandardDeviation() > glsBetaStats.getStandardDeviation());
|
||||
}
|
||||
|
||||
/**
|
||||
* @param rng RNG.
|
||||
* @return a N(0,1) sampler.
|
||||
*/
|
||||
private NormalizedRandomGenerator gaussianRandom(final UniformRandomProvider rng) {
|
||||
final ZigguratNormalizedGaussianSampler n = new ZigguratNormalizedGaussianSampler(rng);
|
||||
|
||||
return new NormalizedRandomGenerator() {
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public double nextNormalizedDouble() {
|
||||
return n.sample();
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue