Merged FieldLUDecomposition and FieldLUDecompositionImpl (see MATH-662).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1174537 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-09-23 06:32:59 +00:00
parent 81821bc466
commit 4709a37a4f
8 changed files with 417 additions and 470 deletions

View File

@ -17,49 +17,192 @@
package org.apache.commons.math.linear;
import java.lang.reflect.Array;
import org.apache.commons.math.Field;
import org.apache.commons.math.FieldElement;
import org.apache.commons.math.exception.DimensionMismatchException;
/**
* An interface to classes that implement an algorithm to calculate the
* LU-decomposition of a real matrix.
* <p>The LU-decomposition of matrix A is a set of three matrices: P, L and U
* such that P&times;A = L&times;U. P is a rows permutation matrix that is used
* to rearrange the rows of A before so that it can be decomposed. L is a lower
* triangular matrix with unit diagonal terms and U is an upper triangular matrix.</p>
* <p>This interface is based on the class with similar name from the
* Calculates the LUP-decomposition of a square matrix.
* <p>The LUP-decomposition of a matrix A consists of three matrices
* L, U and P that satisfy: PA = LU, L is lower triangular, and U is
* upper triangular and P is a permutation matrix. All matrices are
* m&times;m.</p>
* <p>Since {@link FieldElement field elements} do not provide an ordering
* operator, the permutation matrix is computed here only in order to avoid
* a zero pivot element, no attempt is done to get the largest pivot
* element.</p>
* <p>This class is based on the class with similar name from the
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p>
* <ul>
* <li>a {@link #getP() getP} method has been added,</li>
* <li>the <code>det</code> method has been renamed as {@link #getDeterminant()
* <li>the {@code det} method has been renamed as {@link #getDeterminant()
* getDeterminant},</li>
* <li>the <code>getDoublePivot</code> method has been removed (but the int based
* <li>the {@code getDoublePivot} method has been removed (but the int based
* {@link #getPivot() getPivot} method has been kept),</li>
* <li>the <code>solve</code> and <code>isNonSingular</code> methods have been replaced
* by a {@link #getSolver() getSolver} method and the equivalent methods provided by
* the returned {@link DecompositionSolver}.</li>
* <li>the {@code solve} and {@code isNonSingular} methods have been replaced
* by a {@link #getSolver() getSolver} method and the equivalent methods
* provided by the returned {@link DecompositionSolver}.</li>
* </ul>
*
* @param <T> the type of the field elements
* @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a>
* @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a>
* @version $Id$
* @since 2.0
* @since 2.0 (changed to concrete class in 3.0)
*/
public interface FieldLUDecomposition<T extends FieldElement<T>> {
public class FieldLUDecomposition<T extends FieldElement<T>> {
/** Field to which the elements belong. */
private final Field<T> field;
/** Entries of LU decomposition. */
private T[][] lu;
/** Pivot permutation associated with LU decomposition. */
private int[] pivot;
/** Parity of the permutation associated with the LU decomposition. */
private boolean even;
/** Singularity indicator. */
private boolean singular;
/** Cached value of L. */
private FieldMatrix<T> cachedL;
/** Cached value of U. */
private FieldMatrix<T> cachedU;
/** Cached value of P. */
private FieldMatrix<T> cachedP;
/**
* Calculates the LU-decomposition of the given matrix.
* @param matrix The matrix to decompose.
* @throws NonSquareMatrixException if matrix is not square
*/
public FieldLUDecomposition(FieldMatrix<T> matrix) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
}
final int m = matrix.getColumnDimension();
field = matrix.getField();
lu = matrix.getData();
pivot = new int[m];
cachedL = null;
cachedU = null;
cachedP = null;
// Initialize permutation array and parity
for (int row = 0; row < m; row++) {
pivot[row] = row;
}
even = true;
singular = false;
// Loop over columns
for (int col = 0; col < m; col++) {
T sum = field.getZero();
// upper
for (int row = 0; row < col; row++) {
final T[] luRow = lu[row];
sum = luRow[col];
for (int i = 0; i < row; i++) {
sum = sum.subtract(luRow[i].multiply(lu[i][col]));
}
luRow[col] = sum;
}
// lower
int nonZero = col; // permutation row
for (int row = col; row < m; row++) {
final T[] luRow = lu[row];
sum = luRow[col];
for (int i = 0; i < col; i++) {
sum = sum.subtract(luRow[i].multiply(lu[i][col]));
}
luRow[col] = sum;
if (lu[nonZero][col].equals(field.getZero())) {
// try to select a better permutation choice
++nonZero;
}
}
// Singularity check
if (nonZero >= m) {
singular = true;
return;
}
// Pivot if necessary
if (nonZero != col) {
T tmp = field.getZero();
for (int i = 0; i < m; i++) {
tmp = lu[nonZero][i];
lu[nonZero][i] = lu[col][i];
lu[col][i] = tmp;
}
int temp = pivot[nonZero];
pivot[nonZero] = pivot[col];
pivot[col] = temp;
even = !even;
}
// Divide the lower elements by the "winning" diagonal elt.
final T luDiag = lu[col][col];
for (int row = col + 1; row < m; row++) {
final T[] luRow = lu[row];
luRow[col] = luRow[col].divide(luDiag);
}
}
}
/**
* Returns the matrix L of the decomposition.
* <p>L is an lower-triangular matrix</p>
* <p>L is a lower-triangular matrix</p>
* @return the L matrix (or null if decomposed matrix is singular)
*/
FieldMatrix<T> getL();
public FieldMatrix<T> getL() {
if ((cachedL == null) && !singular) {
final int m = pivot.length;
cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
final T[] luI = lu[i];
for (int j = 0; j < i; ++j) {
cachedL.setEntry(i, j, luI[j]);
}
cachedL.setEntry(i, i, field.getOne());
}
}
return cachedL;
}
/**
* Returns the matrix U of the decomposition.
* <p>U is an upper-triangular matrix</p>
* @return the U matrix (or null if decomposed matrix is singular)
*/
FieldMatrix<T> getU();
public FieldMatrix<T> getU() {
if ((cachedU == null) && !singular) {
final int m = pivot.length;
cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
final T[] luI = lu[i];
for (int j = i; j < m; ++j) {
cachedU.setEntry(i, j, luI[j]);
}
}
}
return cachedU;
}
/**
* Returns the P rows permutation matrix.
@ -70,25 +213,240 @@ public interface FieldLUDecomposition<T extends FieldElement<T>> {
* @return the P rows permutation matrix (or null if decomposed matrix is singular)
* @see #getPivot()
*/
FieldMatrix<T> getP();
public FieldMatrix<T> getP() {
if ((cachedP == null) && !singular) {
final int m = pivot.length;
cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
cachedP.setEntry(i, pivot[i], field.getOne());
}
}
return cachedP;
}
/**
* Returns the pivot permutation vector.
* @return the pivot permutation vector
* @see #getP()
*/
int[] getPivot();
public int[] getPivot() {
return pivot.clone();
}
/**
* Return the determinant of the matrix
* Return the determinant of the matrix.
* @return determinant of the matrix
*/
T getDeterminant();
public T getDeterminant() {
if (singular) {
return field.getZero();
} else {
final int m = pivot.length;
T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
for (int i = 0; i < m; i++) {
determinant = determinant.multiply(lu[i][i]);
}
return determinant;
}
}
/**
* Get a solver for finding the A &times; X = B solution in exact linear sense.
* @return a solver
*/
FieldDecompositionSolver<T> getSolver();
public FieldDecompositionSolver<T> getSolver() {
return new Solver<T>(field, lu, pivot, singular);
}
/** Specialized solver. */
private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> {
/** Field to which the elements belong. */
private final Field<T> field;
/** Entries of LU decomposition. */
private final T[][] lu;
/** Pivot permutation associated with LU decomposition. */
private final int[] pivot;
/** Singularity indicator. */
private final boolean singular;
/**
* Build a solver from decomposed matrix.
* @param field field to which the matrix elements belong
* @param lu entries of LU decomposition
* @param pivot pivot permutation associated with LU decomposition
* @param singular singularity indicator
*/
private Solver(final Field<T> field, final T[][] lu,
final int[] pivot, final boolean singular) {
this.field = field;
this.lu = lu;
this.pivot = pivot;
this.singular = singular;
}
/** {@inheritDoc} */
public boolean isNonSingular() {
return !singular;
}
/** {@inheritDoc} */
public FieldVector<T> solve(FieldVector<T> b) {
try {
return solve((ArrayFieldVector<T>) b);
} catch (ClassCastException cce) {
final int m = pivot.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
if (singular) {
throw new SingularMatrixException();
}
@SuppressWarnings("unchecked") // field is of type T
final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);
// Apply permutations to b
for (int row = 0; row < m; row++) {
bp[row] = b.getEntry(pivot[row]);
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
bp[col] = bp[col].divide(lu[col][col]);
final T bpCol = bp[col];
for (int i = 0; i < col; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
return new ArrayFieldVector<T>(field, bp, false);
}
}
/** Solve the linear equation A &times; X = B.
* <p>The A matrix is implicit here. It is </p>
* @param b right-hand side of the equation A &times; X = B
* @return a vector X such that A &times; X = B
* @throws DimensionMismatchException if the matrices dimensions do not match.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public ArrayFieldVector<T> solve(ArrayFieldVector<T> b) {
final int m = pivot.length;
if (b.data.length != m) {
throw new DimensionMismatchException(b.data.length, m);
}
if (singular) {
throw new SingularMatrixException();
}
@SuppressWarnings("unchecked")
// field is of type T
final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(),
m);
// Apply permutations to b
for (int row = 0; row < m; row++) {
bp[row] = b.data[pivot[row]];
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
bp[col] = bp[col].divide(lu[col][col]);
final T bpCol = bp[col];
for (int i = 0; i < col; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
return new ArrayFieldVector<T>(bp, false);
}
/** {@inheritDoc} */
public FieldMatrix<T> solve(FieldMatrix<T> b) {
final int m = pivot.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
if (singular) {
throw new SingularMatrixException();
}
final int nColB = b.getColumnDimension();
// Apply permutations to b
@SuppressWarnings("unchecked") // field is of type T
final T[][] bp = (T[][]) Array.newInstance(field.getZero().getClass(), new int[] { m, nColB });
for (int row = 0; row < m; row++) {
final T[] bpRow = bp[row];
final int pRow = pivot[row];
for (int col = 0; col < nColB; col++) {
bpRow[col] = b.getEntry(pRow, col);
}
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T[] bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
final T[] bpI = bp[i];
final T luICol = lu[i][col];
for (int j = 0; j < nColB; j++) {
bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
}
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
final T[] bpCol = bp[col];
final T luDiag = lu[col][col];
for (int j = 0; j < nColB; j++) {
bpCol[j] = bpCol[j].divide(luDiag);
}
for (int i = 0; i < col; i++) {
final T[] bpI = bp[i];
final T luICol = lu[i][col];
for (int j = 0; j < nColB; j++) {
bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
}
}
}
return new Array2DRowFieldMatrix<T>(field, bp, false);
}
/** {@inheritDoc} */
public FieldMatrix<T> getInverse() {
final int m = pivot.length;
final T one = field.getOne();
FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
identity.setEntry(i, i, one);
}
return solve(identity);
}
}
}

View File

@ -1,411 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.linear;
import java.lang.reflect.Array;
import org.apache.commons.math.Field;
import org.apache.commons.math.FieldElement;
import org.apache.commons.math.exception.DimensionMismatchException;
/**
* Calculates the LUP-decomposition of a square matrix.
* <p>The LUP-decomposition of a matrix A consists of three matrices
* L, U and P that satisfy: PA = LU, L is lower triangular, and U is
* upper triangular and P is a permutation matrix. All matrices are
* m&times;m.</p>
* <p>Since {@link FieldElement field elements} do not provide an ordering
* operator, the permutation matrix is computed here only in order to avoid
* a zero pivot element, no attempt is done to get the largest pivot element.</p>
*
* @param <T> the type of the field elements
* @version $Id$
* @since 2.0
*/
public class FieldLUDecompositionImpl<T extends FieldElement<T>> implements FieldLUDecomposition<T> {
/** Field to which the elements belong. */
private final Field<T> field;
/** Entries of LU decomposition. */
private T lu[][];
/** Pivot permutation associated with LU decomposition */
private int[] pivot;
/** Parity of the permutation associated with the LU decomposition */
private boolean even;
/** Singularity indicator. */
private boolean singular;
/** Cached value of L. */
private FieldMatrix<T> cachedL;
/** Cached value of U. */
private FieldMatrix<T> cachedU;
/** Cached value of P. */
private FieldMatrix<T> cachedP;
/**
* Calculates the LU-decomposition of the given matrix.
* @param matrix The matrix to decompose.
* @throws NonSquareMatrixException if matrix is not square
*/
public FieldLUDecompositionImpl(FieldMatrix<T> matrix) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
}
final int m = matrix.getColumnDimension();
field = matrix.getField();
lu = matrix.getData();
pivot = new int[m];
cachedL = null;
cachedU = null;
cachedP = null;
// Initialize permutation array and parity
for (int row = 0; row < m; row++) {
pivot[row] = row;
}
even = true;
singular = false;
// Loop over columns
for (int col = 0; col < m; col++) {
T sum = field.getZero();
// upper
for (int row = 0; row < col; row++) {
final T[] luRow = lu[row];
sum = luRow[col];
for (int i = 0; i < row; i++) {
sum = sum.subtract(luRow[i].multiply(lu[i][col]));
}
luRow[col] = sum;
}
// lower
int nonZero = col; // permutation row
for (int row = col; row < m; row++) {
final T[] luRow = lu[row];
sum = luRow[col];
for (int i = 0; i < col; i++) {
sum = sum.subtract(luRow[i].multiply(lu[i][col]));
}
luRow[col] = sum;
if (lu[nonZero][col].equals(field.getZero())) {
// try to select a better permutation choice
++nonZero;
}
}
// Singularity check
if (nonZero >= m) {
singular = true;
return;
}
// Pivot if necessary
if (nonZero != col) {
T tmp = field.getZero();
for (int i = 0; i < m; i++) {
tmp = lu[nonZero][i];
lu[nonZero][i] = lu[col][i];
lu[col][i] = tmp;
}
int temp = pivot[nonZero];
pivot[nonZero] = pivot[col];
pivot[col] = temp;
even = !even;
}
// Divide the lower elements by the "winning" diagonal elt.
final T luDiag = lu[col][col];
for (int row = col + 1; row < m; row++) {
final T[] luRow = lu[row];
luRow[col] = luRow[col].divide(luDiag);
}
}
}
/** {@inheritDoc} */
public FieldMatrix<T> getL() {
if ((cachedL == null) && !singular) {
final int m = pivot.length;
cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
final T[] luI = lu[i];
for (int j = 0; j < i; ++j) {
cachedL.setEntry(i, j, luI[j]);
}
cachedL.setEntry(i, i, field.getOne());
}
}
return cachedL;
}
/** {@inheritDoc} */
public FieldMatrix<T> getU() {
if ((cachedU == null) && !singular) {
final int m = pivot.length;
cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
final T[] luI = lu[i];
for (int j = i; j < m; ++j) {
cachedU.setEntry(i, j, luI[j]);
}
}
}
return cachedU;
}
/** {@inheritDoc} */
public FieldMatrix<T> getP() {
if ((cachedP == null) && !singular) {
final int m = pivot.length;
cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
cachedP.setEntry(i, pivot[i], field.getOne());
}
}
return cachedP;
}
/** {@inheritDoc} */
public int[] getPivot() {
return pivot.clone();
}
/** {@inheritDoc} */
public T getDeterminant() {
if (singular) {
return field.getZero();
} else {
final int m = pivot.length;
T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
for (int i = 0; i < m; i++) {
determinant = determinant.multiply(lu[i][i]);
}
return determinant;
}
}
/** {@inheritDoc} */
public FieldDecompositionSolver<T> getSolver() {
return new Solver<T>(field, lu, pivot, singular);
}
/** Specialized solver. */
private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> {
/** Field to which the elements belong. */
private final Field<T> field;
/** Entries of LU decomposition. */
private final T lu[][];
/** Pivot permutation associated with LU decomposition. */
private final int[] pivot;
/** Singularity indicator. */
private final boolean singular;
/**
* Build a solver from decomposed matrix.
* @param field field to which the matrix elements belong
* @param lu entries of LU decomposition
* @param pivot pivot permutation associated with LU decomposition
* @param singular singularity indicator
*/
private Solver(final Field<T> field, final T[][] lu,
final int[] pivot, final boolean singular) {
this.field = field;
this.lu = lu;
this.pivot = pivot;
this.singular = singular;
}
/** {@inheritDoc} */
public boolean isNonSingular() {
return !singular;
}
/** {@inheritDoc} */
public FieldVector<T> solve(FieldVector<T> b) {
try {
return solve((ArrayFieldVector<T>) b);
} catch (ClassCastException cce) {
final int m = pivot.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
if (singular) {
throw new SingularMatrixException();
}
@SuppressWarnings("unchecked") // field is of type T
final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);
// Apply permutations to b
for (int row = 0; row < m; row++) {
bp[row] = b.getEntry(pivot[row]);
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
bp[col] = bp[col].divide(lu[col][col]);
final T bpCol = bp[col];
for (int i = 0; i < col; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
return new ArrayFieldVector<T>(field, bp, false);
}
}
/** Solve the linear equation A &times; X = B.
* <p>The A matrix is implicit here. It is </p>
* @param b right-hand side of the equation A &times; X = B
* @return a vector X such that A &times; X = B
* @throws DimensionMismatchException if the matrices dimensions do not match.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public ArrayFieldVector<T> solve(ArrayFieldVector<T> b) {
final int m = pivot.length;
if (b.data.length != m) {
throw new DimensionMismatchException(b.data.length, m);
}
if (singular) {
throw new SingularMatrixException();
}
@SuppressWarnings("unchecked")
// field is of type T
final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(),
m);
// Apply permutations to b
for (int row = 0; row < m; row++) {
bp[row] = b.data[pivot[row]];
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
bp[col] = bp[col].divide(lu[col][col]);
final T bpCol = bp[col];
for (int i = 0; i < col; i++) {
bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
}
}
return new ArrayFieldVector<T>(bp, false);
}
/** {@inheritDoc} */
public FieldMatrix<T> solve(FieldMatrix<T> b) {
final int m = pivot.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
if (singular) {
throw new SingularMatrixException();
}
final int nColB = b.getColumnDimension();
// Apply permutations to b
@SuppressWarnings("unchecked") // field is of type T
final T[][] bp = (T[][]) Array.newInstance(field.getZero().getClass(), new int[] { m, nColB });
for (int row = 0; row < m; row++) {
final T[] bpRow = bp[row];
final int pRow = pivot[row];
for (int col = 0; col < nColB; col++) {
bpRow[col] = b.getEntry(pRow, col);
}
}
// Solve LY = b
for (int col = 0; col < m; col++) {
final T[] bpCol = bp[col];
for (int i = col + 1; i < m; i++) {
final T[] bpI = bp[i];
final T luICol = lu[i][col];
for (int j = 0; j < nColB; j++) {
bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
}
}
}
// Solve UX = Y
for (int col = m - 1; col >= 0; col--) {
final T[] bpCol = bp[col];
final T luDiag = lu[col][col];
for (int j = 0; j < nColB; j++) {
bpCol[j] = bpCol[j].divide(luDiag);
}
for (int i = 0; i < col; i++) {
final T[] bpI = bp[i];
final T luICol = lu[i][col];
for (int j = 0; j < nColB; j++) {
bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
}
}
}
return new Array2DRowFieldMatrix<T>(field, bp, false);
}
/** {@inheritDoc} */
public FieldMatrix<T> getInverse() {
final int m = pivot.length;
final T one = field.getOne();
FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m);
for (int i = 0; i < m; ++i) {
identity.setEntry(i, i, one);
}
return solve(identity);
}
}
}

View File

@ -26,7 +26,7 @@ import org.apache.commons.math.linear.Array2DRowFieldMatrix;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.ArrayFieldVector;
import org.apache.commons.math.linear.FieldDecompositionSolver;
import org.apache.commons.math.linear.FieldLUDecompositionImpl;
import org.apache.commons.math.linear.FieldLUDecomposition;
import org.apache.commons.math.linear.FieldMatrix;
import org.apache.commons.math.linear.MatrixUtils;
import org.apache.commons.math.linear.QRDecomposition;
@ -154,7 +154,7 @@ public class AdamsNordsieckTransformer {
// compute exact coefficients
FieldMatrix<BigFraction> bigP = buildP(nSteps);
FieldDecompositionSolver<BigFraction> pSolver =
new FieldLUDecompositionImpl<BigFraction>(bigP).getSolver();
new FieldLUDecomposition<BigFraction>(bigP).getSolver();
BigFraction[] u = new BigFraction[nSteps];
Arrays.fill(u, BigFraction.ONE);

View File

@ -434,8 +434,8 @@ public final class BlockFieldMatrixTest {
@Test
public void testTranspose() {
FieldMatrix<Fraction> m = new BlockFieldMatrix<Fraction>(testData);
FieldMatrix<Fraction> mIT = new FieldLUDecompositionImpl<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecompositionImpl<Fraction>(m.transpose()).getSolver().getInverse();
FieldMatrix<Fraction> mIT = new FieldLUDecomposition<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecomposition<Fraction>(m.transpose()).getSolver().getInverse();
TestUtils.assertEquals(mIT, mTI);
m = new BlockFieldMatrix<Fraction>(testData2);
FieldMatrix<Fraction> mt = new BlockFieldMatrix<Fraction>(testData2T);
@ -532,7 +532,7 @@ public final class BlockFieldMatrixTest {
Assert.assertEquals(2, p.getRowDimension());
Assert.assertEquals(2, p.getColumnDimension());
// Invert p
FieldMatrix<Fraction> pInverse = new FieldLUDecompositionImpl<Fraction>(p).getSolver().getInverse();
FieldMatrix<Fraction> pInverse = new FieldLUDecomposition<Fraction>(p).getSolver().getInverse();
Assert.assertEquals(2, pInverse.getRowDimension());
Assert.assertEquals(2, pInverse.getColumnDimension());
@ -547,7 +547,7 @@ public final class BlockFieldMatrixTest {
new Fraction(1), new Fraction(-2), new Fraction(1)
};
Fraction[] solution;
solution = new FieldLUDecompositionImpl<Fraction>(coefficients)
solution = new FieldLUDecomposition<Fraction>(coefficients)
.getSolver()
.solve(new ArrayFieldVector<Fraction>(constants, false)).toArray();
Assert.assertEquals(new Fraction(2).multiply(solution[0]).

View File

@ -24,7 +24,7 @@ import org.apache.commons.math.TestUtils;
import org.apache.commons.math.fraction.Fraction;
import org.apache.commons.math.fraction.FractionField;
public class FieldLUDecompositionImplTest {
public class FieldLUDecompositionTest {
private Fraction[][] testData = {
{ new Fraction(1), new Fraction(2), new Fraction(3)},
{ new Fraction(2), new Fraction(5), new Fraction(3)},
@ -58,7 +58,7 @@ public class FieldLUDecompositionImplTest {
public void testDimensions() {
FieldMatrix<Fraction> matrix =
new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData);
FieldLUDecomposition<Fraction> LU = new FieldLUDecompositionImpl<Fraction>(matrix);
FieldLUDecomposition<Fraction> LU = new FieldLUDecomposition<Fraction>(matrix);
Assert.assertEquals(testData.length, LU.getL().getRowDimension());
Assert.assertEquals(testData.length, LU.getL().getColumnDimension());
Assert.assertEquals(testData.length, LU.getU().getRowDimension());
@ -73,7 +73,7 @@ public class FieldLUDecompositionImplTest {
public void testNonSquare() {
try {
// we don't use FractionField.getInstance() for testing purposes
new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(new Fraction[][] {
new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(new Fraction[][] {
{ Fraction.ZERO, Fraction.ZERO },
{ Fraction.ZERO, Fraction.ZERO },
{ Fraction.ZERO, Fraction.ZERO }
@ -88,14 +88,14 @@ public class FieldLUDecompositionImplTest {
@Test
public void testPAEqualLU() {
FieldMatrix<Fraction> matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData);
FieldLUDecomposition<Fraction> lu = new FieldLUDecompositionImpl<Fraction>(matrix);
FieldLUDecomposition<Fraction> lu = new FieldLUDecomposition<Fraction>(matrix);
FieldMatrix<Fraction> l = lu.getL();
FieldMatrix<Fraction> u = lu.getU();
FieldMatrix<Fraction> p = lu.getP();
TestUtils.assertEquals(p.multiply(matrix), l.multiply(u));
matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testDataMinus);
lu = new FieldLUDecompositionImpl<Fraction>(matrix);
lu = new FieldLUDecomposition<Fraction>(matrix);
l = lu.getL();
u = lu.getU();
p = lu.getP();
@ -105,21 +105,21 @@ public class FieldLUDecompositionImplTest {
for (int i = 0; i < matrix.getRowDimension(); ++i) {
matrix.setEntry(i, i, Fraction.ONE);
}
lu = new FieldLUDecompositionImpl<Fraction>(matrix);
lu = new FieldLUDecomposition<Fraction>(matrix);
l = lu.getL();
u = lu.getU();
p = lu.getP();
TestUtils.assertEquals(p.multiply(matrix), l.multiply(u));
matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), singular);
lu = new FieldLUDecompositionImpl<Fraction>(matrix);
lu = new FieldLUDecomposition<Fraction>(matrix);
Assert.assertFalse(lu.getSolver().isNonSingular());
Assert.assertNull(lu.getL());
Assert.assertNull(lu.getU());
Assert.assertNull(lu.getP());
matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), bigSingular);
lu = new FieldLUDecompositionImpl<Fraction>(matrix);
lu = new FieldLUDecomposition<Fraction>(matrix);
Assert.assertFalse(lu.getSolver().isNonSingular());
Assert.assertNull(lu.getL());
Assert.assertNull(lu.getU());
@ -131,7 +131,7 @@ public class FieldLUDecompositionImplTest {
@Test
public void testLLowerTriangular() {
FieldMatrix<Fraction> matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData);
FieldMatrix<Fraction> l = new FieldLUDecompositionImpl<Fraction>(matrix).getL();
FieldMatrix<Fraction> l = new FieldLUDecomposition<Fraction>(matrix).getL();
for (int i = 0; i < l.getRowDimension(); i++) {
Assert.assertEquals(Fraction.ONE, l.getEntry(i, i));
for (int j = i + 1; j < l.getColumnDimension(); j++) {
@ -144,7 +144,7 @@ public class FieldLUDecompositionImplTest {
@Test
public void testUUpperTriangular() {
FieldMatrix<Fraction> matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData);
FieldMatrix<Fraction> u = new FieldLUDecompositionImpl<Fraction>(matrix).getU();
FieldMatrix<Fraction> u = new FieldLUDecomposition<Fraction>(matrix).getU();
for (int i = 0; i < u.getRowDimension(); i++) {
for (int j = 0; j < i; j++) {
Assert.assertEquals(Fraction.ZERO, u.getEntry(i, j));
@ -156,7 +156,7 @@ public class FieldLUDecompositionImplTest {
@Test
public void testPPermutation() {
FieldMatrix<Fraction> matrix = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData);
FieldMatrix<Fraction> p = new FieldLUDecompositionImpl<Fraction>(matrix).getP();
FieldMatrix<Fraction> p = new FieldLUDecomposition<Fraction>(matrix).getP();
FieldMatrix<Fraction> ppT = p.multiply(p.transpose());
FieldMatrix<Fraction> id =
@ -212,11 +212,11 @@ public class FieldLUDecompositionImplTest {
@Test
public void testSingular() {
FieldLUDecomposition<Fraction> lu =
new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData));
new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData));
Assert.assertTrue(lu.getSolver().isNonSingular());
lu = new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), singular));
lu = new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), singular));
Assert.assertFalse(lu.getSolver().isNonSingular());
lu = new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), bigSingular));
lu = new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), bigSingular));
Assert.assertFalse(lu.getSolver().isNonSingular());
}
@ -224,7 +224,7 @@ public class FieldLUDecompositionImplTest {
@Test
public void testMatricesValues1() {
FieldLUDecomposition<Fraction> lu =
new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData));
new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), testData));
FieldMatrix<Fraction> lRef = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), new Fraction[][] {
{ new Fraction(1), new Fraction(0), new Fraction(0) },
{ new Fraction(2), new Fraction(1), new Fraction(0) },
@ -265,7 +265,7 @@ public class FieldLUDecompositionImplTest {
@Test
public void testMatricesValues2() {
FieldLUDecomposition<Fraction> lu =
new FieldLUDecompositionImpl<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), luData));
new FieldLUDecomposition<Fraction>(new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), luData));
FieldMatrix<Fraction> lRef = new Array2DRowFieldMatrix<Fraction>(FractionField.getInstance(), new Fraction[][] {
{ new Fraction(1), new Fraction(0), new Fraction(0) },
{ new Fraction(3), new Fraction(1), new Fraction(0) },

View File

@ -65,13 +65,13 @@ public class FieldLUSolverTest {
@Test
public void testSingular() {
FieldDecompositionSolver<Fraction> solver;
solver = new FieldLUDecompositionImpl<Fraction>(createFractionMatrix(testData))
solver = new FieldLUDecomposition<Fraction>(createFractionMatrix(testData))
.getSolver();
Assert.assertTrue(solver.isNonSingular());
solver = new FieldLUDecompositionImpl<Fraction>(createFractionMatrix(singular))
solver = new FieldLUDecomposition<Fraction>(createFractionMatrix(singular))
.getSolver();
Assert.assertFalse(solver.isNonSingular());
solver = new FieldLUDecompositionImpl<Fraction>(createFractionMatrix(bigSingular))
solver = new FieldLUDecomposition<Fraction>(createFractionMatrix(bigSingular))
.getSolver();
Assert.assertFalse(solver.isNonSingular());
}
@ -80,7 +80,7 @@ public class FieldLUSolverTest {
@Test
public void testSolveDimensionErrors() {
FieldDecompositionSolver<Fraction> solver;
solver = new FieldLUDecompositionImpl<Fraction>(createFractionMatrix(testData))
solver = new FieldLUDecomposition<Fraction>(createFractionMatrix(testData))
.getSolver();
FieldMatrix<Fraction> b = createFractionMatrix(new int[2][2]);
try {
@ -101,7 +101,7 @@ public class FieldLUSolverTest {
@Test
public void testSolveSingularityErrors() {
FieldDecompositionSolver solver;
solver = new FieldLUDecompositionImpl(createFractionMatrix(singular))
solver = new FieldLUDecomposition(createFractionMatrix(singular))
.getSolver();
FieldMatrix b = createFractionMatrix(new int[2][2]);
try {
@ -122,7 +122,7 @@ public class FieldLUSolverTest {
@Test
public void testSolve() {
FieldDecompositionSolver solver;
solver = new FieldLUDecompositionImpl<Fraction>(createFractionMatrix(testData))
solver = new FieldLUDecomposition<Fraction>(createFractionMatrix(testData))
.getSolver();
FieldMatrix<Fraction> b = createFractionMatrix(new int[][] {
{ 1, 0 }, { 2, -5 }, { 3, 1 }
@ -172,6 +172,6 @@ public class FieldLUSolverTest {
}
private double getDeterminant(final FieldMatrix<Fraction> m) {
return new FieldLUDecompositionImpl<Fraction>(m).getDeterminant().doubleValue();
return new FieldLUDecomposition<Fraction>(m).getDeterminant().doubleValue();
}
}

View File

@ -297,8 +297,8 @@ public final class FieldMatrixImplTest {
@Test
public void testTranspose() {
FieldMatrix<Fraction> m = new Array2DRowFieldMatrix<Fraction>(testData);
FieldMatrix<Fraction> mIT = new FieldLUDecompositionImpl<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecompositionImpl<Fraction>(m.transpose()).getSolver().getInverse();
FieldMatrix<Fraction> mIT = new FieldLUDecomposition<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecomposition<Fraction>(m.transpose()).getSolver().getInverse();
TestUtils.assertEquals(mIT, mTI);
m = new Array2DRowFieldMatrix<Fraction>(testData2);
FieldMatrix<Fraction> mt = new Array2DRowFieldMatrix<Fraction>(testData2T);
@ -395,7 +395,7 @@ public final class FieldMatrixImplTest {
Assert.assertEquals(2, p.getRowDimension());
Assert.assertEquals(2, p.getColumnDimension());
// Invert p
FieldMatrix<Fraction> pInverse = new FieldLUDecompositionImpl<Fraction>(p).getSolver().getInverse();
FieldMatrix<Fraction> pInverse = new FieldLUDecomposition<Fraction>(p).getSolver().getInverse();
Assert.assertEquals(2, pInverse.getRowDimension());
Assert.assertEquals(2, pInverse.getColumnDimension());
@ -410,7 +410,7 @@ public final class FieldMatrixImplTest {
new Fraction(1), new Fraction(-2), new Fraction(1)
};
Fraction[] solution;
solution = new FieldLUDecompositionImpl<Fraction>(coefficients)
solution = new FieldLUDecomposition<Fraction>(coefficients)
.getSolver()
.solve(new ArrayFieldVector<Fraction>(constants, false)).toArray();
Assert.assertEquals(new Fraction(2).multiply(solution[0]).

View File

@ -291,8 +291,8 @@ public class SparseFieldMatrixTest {
@Test
public void testTranspose() {
FieldMatrix<Fraction> m = createSparseMatrix(testData);
FieldMatrix<Fraction> mIT = new FieldLUDecompositionImpl<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecompositionImpl<Fraction>(m.transpose()).getSolver().getInverse();
FieldMatrix<Fraction> mIT = new FieldLUDecomposition<Fraction>(m).getSolver().getInverse().transpose();
FieldMatrix<Fraction> mTI = new FieldLUDecomposition<Fraction>(m.transpose()).getSolver().getInverse();
assertClose("inverse-transpose", mIT, mTI, normTolerance);
m = createSparseMatrix(testData2);
FieldMatrix<Fraction> mt = createSparseMatrix(testData2T);
@ -387,7 +387,7 @@ public class SparseFieldMatrixTest {
Assert.assertEquals(2, p.getRowDimension());
Assert.assertEquals(2, p.getColumnDimension());
// Invert p
FieldMatrix<Fraction> pInverse = new FieldLUDecompositionImpl<Fraction>(p).getSolver().getInverse();
FieldMatrix<Fraction> pInverse = new FieldLUDecomposition<Fraction>(p).getSolver().getInverse();
Assert.assertEquals(2, pInverse.getRowDimension());
Assert.assertEquals(2, pInverse.getColumnDimension());
@ -397,7 +397,7 @@ public class SparseFieldMatrixTest {
FieldMatrix<Fraction> coefficients = createSparseMatrix(coefficientsData);
Fraction[] constants = { new Fraction(1), new Fraction(-2), new Fraction(1) };
Fraction[] solution;
solution = new FieldLUDecompositionImpl<Fraction>(coefficients)
solution = new FieldLUDecomposition<Fraction>(coefficients)
.getSolver()
.solve(new ArrayFieldVector<Fraction>(constants, false)).toArray();
Assert.assertEquals((new Fraction(2).multiply((solution[0])).add(new Fraction(3).multiply(solution[1])).subtract(new Fraction(2).multiply(solution[2]))).doubleValue(),