mirror of
https://github.com/apache/commons-math.git
synced 2025-02-06 10:09:26 +00:00
Added getExponent, scalb and hypot to DerivativeStructure.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1373779 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
4c56e61497
commit
486224fd36
@ -402,6 +402,90 @@ public class DerivativeStructure implements FieldElement<DerivativeStructure>, S
|
||||
return negate(); // flip sign
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the exponent of the instance value, removing the bias.
|
||||
* <p>
|
||||
* For double numbers of the form 2<sup>x</sup>, the unbiased
|
||||
* exponent is exactly x.
|
||||
* </p>
|
||||
* @return exponent for instance in IEEE754 representation, without bias
|
||||
*/
|
||||
public int getExponent() {
|
||||
return FastMath.getExponent(data[0]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply the instance by a power of 2.
|
||||
* @param n power of 2
|
||||
* @return this × 2<sup>n</sup>
|
||||
*/
|
||||
public DerivativeStructure scalb(final int n) {
|
||||
final DerivativeStructure ds = new DerivativeStructure(compiler);
|
||||
for (int i = 0; i < ds.data.length; ++i) {
|
||||
ds.data[i] = FastMath.scalb(data[i], n);
|
||||
}
|
||||
return ds;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
|
||||
* - sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)<br/>
|
||||
* avoiding intermediate overflow or underflow.
|
||||
*
|
||||
* <ul>
|
||||
* <li> If either argument is infinite, then the result is positive infinity.</li>
|
||||
* <li> else, if either argument is NaN then the result is NaN.</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param x a value
|
||||
* @param y a value
|
||||
* @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
||||
* @exception DimensionMismatchException if number of free parameters or orders are inconsistent
|
||||
*/
|
||||
public static DerivativeStructure hypot(final DerivativeStructure x, final DerivativeStructure y)
|
||||
throws DimensionMismatchException {
|
||||
|
||||
x.compiler.checkCompatibility(y.compiler);
|
||||
|
||||
if (Double.isInfinite(x.data[0]) || Double.isInfinite(y.data[0])) {
|
||||
return new DerivativeStructure(x.compiler.getFreeParameters(),
|
||||
x.compiler.getFreeParameters(),
|
||||
Double.POSITIVE_INFINITY);
|
||||
} else if (Double.isNaN(x.data[0]) || Double.isNaN(y.data[0])) {
|
||||
return new DerivativeStructure(x.compiler.getFreeParameters(),
|
||||
x.compiler.getFreeParameters(),
|
||||
Double.NaN);
|
||||
} else {
|
||||
|
||||
final int expX = x.getExponent();
|
||||
final int expY = y.getExponent();
|
||||
if (expX > expY + 27) {
|
||||
// y is neglectible with respect to x
|
||||
return x.abs();
|
||||
} else if (expY > expX + 27) {
|
||||
// x is neglectible with respect to y
|
||||
return y.abs();
|
||||
} else {
|
||||
|
||||
// find an intermediate scale to avoid both overflow and underflow
|
||||
final int middleExp = (expX + expY) / 2;
|
||||
|
||||
// scale parameters without losing precision
|
||||
final DerivativeStructure scaledX = x.scalb(-middleExp);
|
||||
final DerivativeStructure scaledY = y.scalb(-middleExp);
|
||||
|
||||
// compute scaled hypotenuse
|
||||
final DerivativeStructure scaledH =
|
||||
scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();
|
||||
|
||||
// remove scaling
|
||||
return scaledH.scalb(middleExp);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public DerivativeStructure reciprocal() {
|
||||
final DerivativeStructure result = new DerivativeStructure(compiler);
|
||||
|
@ -403,6 +403,44 @@ public class DerivativeStructureTest {
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testHypotDefinition() {
|
||||
double epsilon = 1.0e-20;
|
||||
for (int maxOrder = 0; maxOrder < 5; ++maxOrder) {
|
||||
for (double x = -1.7; x < 2; x += 0.2) {
|
||||
DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x);
|
||||
for (double y = -1.7; y < 2; y += 0.2) {
|
||||
DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y);
|
||||
DerivativeStructure hypot = DerivativeStructure.hypot(dsY, dsX);
|
||||
DerivativeStructure ref = dsX.multiply(dsX).add(dsY.multiply(dsY)).sqrt();
|
||||
DerivativeStructure zero = hypot.subtract(ref);
|
||||
for (int n = 0; n <= maxOrder; ++n) {
|
||||
for (int m = 0; m <= maxOrder; ++m) {
|
||||
if (n + m <= maxOrder) {
|
||||
Assert.assertEquals(0, zero.getPartialDerivative(n, m), epsilon);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testHypotNoOverflow() {
|
||||
|
||||
DerivativeStructure dsX = new DerivativeStructure(2, 5, 0, +3.0e250);
|
||||
DerivativeStructure dsY = new DerivativeStructure(2, 5, 1, -4.0e250);
|
||||
DerivativeStructure hypot = DerivativeStructure.hypot(dsX, dsY);
|
||||
Assert.assertEquals(5.0e250, hypot.getValue(), 1.0e235);
|
||||
Assert.assertEquals(dsX.getValue() / hypot.getValue(), hypot.getPartialDerivative(1, 0), 1.0e-10);
|
||||
Assert.assertEquals(dsY.getValue() / hypot.getValue(), hypot.getPartialDerivative(0, 1), 1.0e-10);
|
||||
|
||||
DerivativeStructure sqrt = dsX.multiply(dsX).add(dsY.multiply(dsY)).sqrt();
|
||||
Assert.assertTrue(Double.isInfinite(sqrt.getValue()));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testExp() {
|
||||
double[] epsilon = new double[] { 1.0e-16, 1.0e-16, 1.0e-16, 1.0e-16, 1.0e-16 };
|
||||
|
Loading…
x
Reference in New Issue
Block a user