MATH-1172: Simple curve fitter
Provides boiler-plate code so that users can readily fit any parametric function.
This commit is contained in:
parent
753f278d10
commit
491786ce41
|
@ -79,6 +79,10 @@ Users are encouraged to upgrade to this version as this release not
|
|||
2. A few methods in the FastMath class are in fact slower that their
|
||||
counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901).
|
||||
">
|
||||
<action dev="erans" type="add" issue="MATH-1172">
|
||||
New class "SimpleCurveFitter": Boiler-plate code to allow fitting of
|
||||
a user-defined parametric function.
|
||||
</action>
|
||||
<action dev="erans" type="add" issue="MATH-1173">
|
||||
New classes "TricubicInterpolatingFunction" and "TricubicInterpolator" to
|
||||
replace "TricubicSplineInterpolatingFunction" and "TricubicSplineInterpolator".
|
||||
|
|
|
@ -0,0 +1,126 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.fitting;
|
||||
|
||||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
|
||||
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
|
||||
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
|
||||
import org.apache.commons.math3.linear.DiagonalMatrix;
|
||||
|
||||
/**
|
||||
* Fits points to a user-defined {@link ParametricUnivariateFunction function}.
|
||||
*
|
||||
* @since 3.4
|
||||
*/
|
||||
public class SimpleCurveFitter extends AbstractCurveFitter {
|
||||
/** Function to fit. */
|
||||
private final ParametricUnivariateFunction function;
|
||||
/** Initial guess for the parameters. */
|
||||
private final double[] initialGuess;
|
||||
/** Maximum number of iterations of the optimization algorithm. */
|
||||
private final int maxIter;
|
||||
|
||||
/**
|
||||
* Contructor used by the factory methods.
|
||||
*
|
||||
* @param function Function to fit.
|
||||
* @param initialGuess Initial guess. Cannot be {@code null}. Its length must
|
||||
* be consistent with the number of parameters of the {@code function} to fit.
|
||||
* @param maxIter Maximum number of iterations of the optimization algorithm.
|
||||
*/
|
||||
private SimpleCurveFitter(ParametricUnivariateFunction function,
|
||||
double[] initialGuess,
|
||||
int maxIter) {
|
||||
this.function = function;
|
||||
this.initialGuess = initialGuess;
|
||||
this.maxIter = maxIter;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a curve fitter.
|
||||
* The initial guess for the parameters will be {@link ParameterGuesser}
|
||||
* computed automatically, and the maximum number of iterations of the
|
||||
* optimization algorithm is set to {@link Integer#MAX_VALUE}.
|
||||
*
|
||||
* @param f Function to fit.
|
||||
* @param start Initial guess for the parameters. Cannot be {@code null}.
|
||||
* Its length must be consistent with the number of parameters of the
|
||||
* function to fit.
|
||||
* @return a curve fitter.
|
||||
*
|
||||
* @see #withStartPoint(double[])
|
||||
* @see #withMaxIterations(int)
|
||||
*/
|
||||
public static SimpleCurveFitter create(ParametricUnivariateFunction f,
|
||||
double[] start) {
|
||||
return new SimpleCurveFitter(f, start, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the start point (initial guess).
|
||||
* @param newStart new start point (initial guess)
|
||||
* @return a new instance.
|
||||
*/
|
||||
public SimpleCurveFitter withStartPoint(double[] newStart) {
|
||||
return new SimpleCurveFitter(function,
|
||||
newStart.clone(),
|
||||
maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the maximum number of iterations.
|
||||
* @param newMaxIter maximum number of iterations
|
||||
* @return a new instance.
|
||||
*/
|
||||
public SimpleCurveFitter withMaxIterations(int newMaxIter) {
|
||||
return new SimpleCurveFitter(function,
|
||||
initialGuess,
|
||||
newMaxIter);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
|
||||
// Prepare least-squares problem.
|
||||
final int len = observations.size();
|
||||
final double[] target = new double[len];
|
||||
final double[] weights = new double[len];
|
||||
|
||||
int count = 0;
|
||||
for (WeightedObservedPoint obs : observations) {
|
||||
target[count] = obs.getY();
|
||||
weights[count] = obs.getWeight();
|
||||
++count;
|
||||
}
|
||||
|
||||
final AbstractCurveFitter.TheoreticalValuesFunction model
|
||||
= new AbstractCurveFitter.TheoreticalValuesFunction(function,
|
||||
observations);
|
||||
|
||||
// Create an optimizer for fitting the curve to the observed points.
|
||||
return new LeastSquaresBuilder().
|
||||
maxEvaluations(Integer.MAX_VALUE).
|
||||
maxIterations(maxIter).
|
||||
start(initialGuess).
|
||||
target(target).
|
||||
weight(new DiagonalMatrix(weights)).
|
||||
model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
||||
build();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.fitting;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.commons.math3.TestUtils;
|
||||
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
|
||||
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
|
||||
import org.apache.commons.math3.distribution.RealDistribution;
|
||||
import org.apache.commons.math3.distribution.UniformRealDistribution;
|
||||
import org.apache.commons.math3.exception.ConvergenceException;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
* Test for class {@link SimpleCurveFitter}.
|
||||
*/
|
||||
public class SimpleCurveFitterTest {
|
||||
@Test
|
||||
public void testPolynomialFit() {
|
||||
final Random randomizer = new Random(53882150042L);
|
||||
final RealDistribution rng = new UniformRealDistribution(-100, 100);
|
||||
rng.reseedRandomGenerator(64925784252L);
|
||||
|
||||
final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
|
||||
final PolynomialFunction f = new PolynomialFunction(coeff);
|
||||
|
||||
// Collect data from a known polynomial.
|
||||
final WeightedObservedPoints obs = new WeightedObservedPoints();
|
||||
for (int i = 0; i < 100; i++) {
|
||||
final double x = rng.sample();
|
||||
obs.add(x, f.value(x) + 0.1 * randomizer.nextGaussian());
|
||||
}
|
||||
|
||||
final ParametricUnivariateFunction function = new PolynomialFunction.Parametric();
|
||||
// Start fit from initial guesses that are far from the optimal values.
|
||||
final SimpleCurveFitter fitter
|
||||
= SimpleCurveFitter.create(function,
|
||||
new double[] { -1e20, 3e15, -5e25 });
|
||||
final double[] best = fitter.fit(obs.toList());
|
||||
|
||||
TestUtils.assertEquals("best != coeff", coeff, best, 2e-2);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue