Added @since tags.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@950326 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
110f03f594
commit
49d757a9cb
|
@ -529,6 +529,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param beta second distribution shape parameter
|
||||
* @return random value sampled from the beta(alpha, beta) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextBeta(double alpha, double beta) throws MathException {
|
||||
return nextInversionDeviate(new BetaDistributionImpl(alpha, beta));
|
||||
|
@ -543,6 +544,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param probabilityOfSuccess probability of success of the Binomial distribution
|
||||
* @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) throws MathException {
|
||||
return nextInversionDeviate(new BinomialDistributionImpl(numberOfTrials, probabilityOfSuccess));
|
||||
|
@ -557,6 +559,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param scale the scale parameter of the Cauchy distribution
|
||||
* @return random value sampled from the Cauchy(median, scale) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextCauchy(double median, double scale) throws MathException {
|
||||
return nextInversionDeviate(new CauchyDistributionImpl(median, scale));
|
||||
|
@ -570,6 +573,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param df the degrees of freedom of the ChiSquare distribution
|
||||
* @return random value sampled from the ChiSquare(df) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextChiSquare(double df) throws MathException {
|
||||
return nextInversionDeviate(new ChiSquaredDistributionImpl(df));
|
||||
|
@ -584,6 +588,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param denominatorDf the denominator degrees of freedom of the F distribution
|
||||
* @return random value sampled from the F(numeratorDf, denominatorDf) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextF(double numeratorDf, double denominatorDf) throws MathException {
|
||||
return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
|
||||
|
@ -598,6 +603,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param scale the scale parameter of the Gamma distribution
|
||||
* @return random value sampled from the Gamma(shape, scale) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextGamma(double shape, double scale) throws MathException {
|
||||
return nextInversionDeviate(new GammaDistributionImpl(shape, scale));
|
||||
|
@ -613,6 +619,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param sampleSize the sample size of the Hypergeometric distribution
|
||||
* @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws MathException {
|
||||
return nextInversionDeviate(new HypergeometricDistributionImpl(populationSize, numberOfSuccesses, sampleSize));
|
||||
|
@ -627,6 +634,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param p the probability of success of the Pascal distribution
|
||||
* @return random value sampled from the Pascal(r, p) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextPascal(int r, double p) throws MathException {
|
||||
return nextInversionDeviate(new PascalDistributionImpl(r, p));
|
||||
|
@ -640,6 +648,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param df the degrees of freedom of the T distribution
|
||||
* @return random value from the T(df) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextT(double df) throws MathException {
|
||||
return nextInversionDeviate(new TDistributionImpl(df));
|
||||
|
@ -654,6 +663,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param scale the scale parameter of the Weibull distribution
|
||||
* @return random value sampled from the Weibull(shape, size) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextWeibull(double shape, double scale) throws MathException {
|
||||
return nextInversionDeviate(new WeibullDistributionImpl(shape, scale));
|
||||
|
@ -668,6 +678,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param exponent the exponent of the ZipfDistribution
|
||||
* @return random value sampled from the Zipf(numberOfElements, exponent) distribution
|
||||
* @throws MathException if an error occurs generating the random value
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextZipf(int numberOfElements, double exponent) throws MathException {
|
||||
return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
|
||||
|
@ -879,6 +890,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param distribution Continuous distribution to generate a random value from
|
||||
* @return a random value sampled from the given distribution
|
||||
* @throws MathException if an error occurs computing the inverse cumulative distribution function
|
||||
* @since 2.2
|
||||
*/
|
||||
public double nextInversionDeviate(ContinuousDistribution distribution) throws MathException {
|
||||
return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
||||
|
@ -892,6 +904,7 @@ public class RandomDataImpl implements RandomData, Serializable {
|
|||
* @param distribution Integer distribution to generate a random value from
|
||||
* @return a random value sampled from the given distribution
|
||||
* @throws MathException if an error occurs computing the inverse cumulative distribution function
|
||||
* @since 2.2
|
||||
*/
|
||||
public int nextInversionDeviate(IntegerDistribution distribution) throws MathException {
|
||||
final double target = nextUniform(0, 1);
|
||||
|
|
Loading…
Reference in New Issue