Fixed javadoc errors. One-sided t-test significance adjustment was
reversed in javadoc for boolean-valued test methods. BZ #34448 Reported by: Gilles Gaillard git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@161613 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
2eb28c766c
commit
4a4f843f04
|
@ -110,7 +110,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be rejected with
|
||||
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
||||
* <code>alpha / 2</code>
|
||||
* <code>alpha * 2</code>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
* The validity of the test depends on the assumptions of the parametric
|
||||
|
@ -347,7 +347,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be
|
||||
* rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2</code>
|
||||
* perform a 1-sided test, use <code>alpha * 2</code>
|
||||
* <p>
|
||||
* <strong>Examples:</strong><br><ol>
|
||||
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
||||
|
@ -356,7 +356,7 @@ public interface TTest {
|
|||
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
||||
* at the 99% level, first verify that the measured sample mean is less
|
||||
* than <code>mu</code> and then use
|
||||
* <br><code>tTest(mu, sample, 0.005) </code>
|
||||
* <br><code>tTest(mu, sample, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -415,7 +415,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be rejected with
|
||||
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
||||
* <code>alpha / 2.</code>
|
||||
* <code>alpha * 2.</code>
|
||||
* <p>
|
||||
* <strong>Examples:</strong><br><ol>
|
||||
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
||||
|
@ -424,7 +424,7 @@ public interface TTest {
|
|||
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
||||
* at the 99% level, first verify that the measured sample mean is less
|
||||
* than <code>mu</code> and then use
|
||||
* <br><code>tTest(mu, sampleStats, 0.005) </code>
|
||||
* <br><code>tTest(mu, sampleStats, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -535,7 +535,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis that the means are
|
||||
* equal can be rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2</code>
|
||||
* perform a 1-sided test, use <code>alpha * 2</code>
|
||||
* <p>
|
||||
* See {@link #t(double[], double[])} for the formula used to compute the
|
||||
* t-statistic. Degrees of freedom are approximated using the
|
||||
|
@ -549,9 +549,9 @@ public interface TTest {
|
|||
* <br><code>tTest(sample1, sample2, 0.05). </code>
|
||||
* </li>
|
||||
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,
|
||||
* first verify that the measured mean of <code>sample 1</code> is less
|
||||
* than the mean of <code>sample 2</code> and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.005) </code>
|
||||
* at the 99% level, first verify that the measured mean of <code>sample 1</code>
|
||||
* is less than the mean of <code>sample 2</code> and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -591,7 +591,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis that the means are
|
||||
* equal can be rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2.</code> To perform the test
|
||||
* perform a 1-sided test, use <code>alpha * 2.</code> To perform the test
|
||||
* without the assumption of equal subpopulation variances, use
|
||||
* {@link #tTest(double[], double[], double)}.
|
||||
* <p>
|
||||
|
@ -607,7 +607,7 @@ public interface TTest {
|
|||
* at the 99% level, first verify that the measured mean of
|
||||
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
||||
* and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.005) </code>
|
||||
* <br><code>tTest(sample1, sample2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -723,7 +723,7 @@ public interface TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis that the means are
|
||||
* equal can be rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2</code>
|
||||
* perform a 1-sided test, use <code>alpha * 2</code>
|
||||
* <p>
|
||||
* See {@link #t(double[], double[])} for the formula used to compute the
|
||||
* t-statistic. Degrees of freedom are approximated using the
|
||||
|
@ -739,7 +739,7 @@ public interface TTest {
|
|||
* at the 99% level, first verify that the measured mean of
|
||||
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
||||
* and then use
|
||||
* <br><code>tTest(sampleStats1, sampleStats2, 0.005) </code>
|
||||
* <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
|
|
@ -123,7 +123,7 @@ public class TTestImpl implements TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be rejected with
|
||||
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
||||
* <code>alpha / 2</code>
|
||||
* <code>alpha * 2</code>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
* The validity of the test depends on the assumptions of the parametric
|
||||
|
@ -420,7 +420,7 @@ public class TTestImpl implements TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be
|
||||
* rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2</code>
|
||||
* perform a 1-sided test, use <code>alpha * 2</code>
|
||||
* <p>
|
||||
* <strong>Examples:</strong><br><ol>
|
||||
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
||||
|
@ -429,7 +429,7 @@ public class TTestImpl implements TTest {
|
|||
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
||||
* at the 99% level, first verify that the measured sample mean is less
|
||||
* than <code>mu</code> and then use
|
||||
* <br><code>tTest(mu, sample, 0.005) </code>
|
||||
* <br><code>tTest(mu, sample, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -501,7 +501,7 @@ public class TTestImpl implements TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis can be rejected with
|
||||
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
||||
* <code>alpha / 2.</code>
|
||||
* <code>alpha * 2.</code>
|
||||
* <p>
|
||||
* <strong>Examples:</strong><br><ol>
|
||||
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
||||
|
@ -510,7 +510,7 @@ public class TTestImpl implements TTest {
|
|||
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
||||
* at the 99% level, first verify that the measured sample mean is less
|
||||
* than <code>mu</code> and then use
|
||||
* <br><code>tTest(mu, sampleStats, 0.005) </code>
|
||||
* <br><code>tTest(mu, sampleStats, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -656,10 +656,10 @@ public class TTestImpl implements TTest {
|
|||
* the 95% level, use
|
||||
* <br><code>tTest(sample1, sample2, 0.05). </code>
|
||||
* </li>
|
||||
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,
|
||||
* first verify that the measured mean of <code>sample 1</code> is less
|
||||
* than the mean of <code>sample 2</code> and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.005) </code>
|
||||
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code> at
|
||||
* the 99% level, first verify that the measured mean of <code>sample 1</code>
|
||||
* is less than the mean of <code>sample 2</code> and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -703,7 +703,7 @@ public class TTestImpl implements TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis that the means are
|
||||
* equal can be rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2.</code> To perform the test
|
||||
* perform a 1-sided test, use <code>alpha * 2.</code> To perform the test
|
||||
* without the assumption of equal subpopulation variances, use
|
||||
* {@link #tTest(double[], double[], double)}.
|
||||
* <p>
|
||||
|
@ -719,7 +719,7 @@ public class TTestImpl implements TTest {
|
|||
* at the 99% level, first verify that the measured mean of
|
||||
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
||||
* and then use
|
||||
* <br><code>tTest(sample1, sample2, 0.005) </code>
|
||||
* <br><code>tTest(sample1, sample2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
@ -855,7 +855,7 @@ public class TTestImpl implements TTest {
|
|||
* <p>
|
||||
* Returns <code>true</code> iff the null hypothesis that the means are
|
||||
* equal can be rejected with confidence <code>1 - alpha</code>. To
|
||||
* perform a 1-sided test, use <code>alpha / 2</code>
|
||||
* perform a 1-sided test, use <code>alpha * 2</code>
|
||||
* <p>
|
||||
* See {@link #t(double[], double[])} for the formula used to compute the
|
||||
* t-statistic. Degrees of freedom are approximated using the
|
||||
|
@ -871,7 +871,7 @@ public class TTestImpl implements TTest {
|
|||
* at the 99% level, first verify that the measured mean of
|
||||
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
||||
* and then use
|
||||
* <br><code>tTest(sampleStats1, sampleStats2, 0.005) </code>
|
||||
* <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>
|
||||
* </li></ol>
|
||||
* <p>
|
||||
* <strong>Usage Note:</strong><br>
|
||||
|
|
|
@ -500,7 +500,7 @@ testStatistic.pairedT(sample1, sample2);
|
|||
</source>
|
||||
</p>
|
||||
<p>
|
||||
To compute the (one-sided) p-value:
|
||||
To compute the p-value:
|
||||
<source>
|
||||
testStatistic.pairedTTest(sample1, sample2);
|
||||
</source>
|
||||
|
@ -515,7 +515,7 @@ testStatistic.pairedTTest(sample1, sample2, .05);
|
|||
returned by <code>testStatistic.pairedTTest(sample1, sample2)</code>
|
||||
is less than <code>.05</code>
|
||||
</dd>
|
||||
<dd><strong>Example 2: </strong> unpaired, two-sample t-test using
|
||||
<dd><strong>Example 2: </strong> unpaired, two-sided, two-sample t-test using
|
||||
<code>StatisticalSummary</code> instances, without assuming that
|
||||
subpopulation variances are equal.
|
||||
<p>
|
||||
|
@ -543,7 +543,7 @@ testStatistic.t(summary1, summary2);
|
|||
</source>
|
||||
</p>
|
||||
<p>
|
||||
To compute the (one-sided) p-value:
|
||||
To compute the p-value:
|
||||
<source>
|
||||
testStatistic.tTest(sample1, sample2);
|
||||
</source>
|
||||
|
|
Loading…
Reference in New Issue