Fixed javadoc errors. One-sided t-test significance adjustment was

reversed in javadoc for boolean-valued test methods.
BZ #34448
Reported by: Gilles Gaillard


git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@161613 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2005-04-16 21:49:45 +00:00
parent 2eb28c766c
commit 4a4f843f04
3 changed files with 29 additions and 29 deletions

View File

@ -110,7 +110,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be rejected with
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
* <code>alpha / 2</code>
* <code>alpha * 2</code>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the test depends on the assumptions of the parametric
@ -347,7 +347,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be
* rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2</code>
* perform a 1-sided test, use <code>alpha * 2</code>
* <p>
* <strong>Examples:</strong><br><ol>
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
@ -356,7 +356,7 @@ public interface TTest {
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
* at the 99% level, first verify that the measured sample mean is less
* than <code>mu</code> and then use
* <br><code>tTest(mu, sample, 0.005) </code>
* <br><code>tTest(mu, sample, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -415,7 +415,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be rejected with
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
* <code>alpha / 2.</code>
* <code>alpha * 2.</code>
* <p>
* <strong>Examples:</strong><br><ol>
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
@ -424,7 +424,7 @@ public interface TTest {
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
* at the 99% level, first verify that the measured sample mean is less
* than <code>mu</code> and then use
* <br><code>tTest(mu, sampleStats, 0.005) </code>
* <br><code>tTest(mu, sampleStats, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -535,7 +535,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis that the means are
* equal can be rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2</code>
* perform a 1-sided test, use <code>alpha * 2</code>
* <p>
* See {@link #t(double[], double[])} for the formula used to compute the
* t-statistic. Degrees of freedom are approximated using the
@ -549,9 +549,9 @@ public interface TTest {
* <br><code>tTest(sample1, sample2, 0.05). </code>
* </li>
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,
* first verify that the measured mean of <code>sample 1</code> is less
* than the mean of <code>sample 2</code> and then use
* <br><code>tTest(sample1, sample2, 0.005) </code>
* at the 99% level, first verify that the measured mean of <code>sample 1</code>
* is less than the mean of <code>sample 2</code> and then use
* <br><code>tTest(sample1, sample2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -591,7 +591,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis that the means are
* equal can be rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2.</code> To perform the test
* perform a 1-sided test, use <code>alpha * 2.</code> To perform the test
* without the assumption of equal subpopulation variances, use
* {@link #tTest(double[], double[], double)}.
* <p>
@ -607,7 +607,7 @@ public interface TTest {
* at the 99% level, first verify that the measured mean of
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
* and then use
* <br><code>tTest(sample1, sample2, 0.005) </code>
* <br><code>tTest(sample1, sample2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -723,7 +723,7 @@ public interface TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis that the means are
* equal can be rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2</code>
* perform a 1-sided test, use <code>alpha * 2</code>
* <p>
* See {@link #t(double[], double[])} for the formula used to compute the
* t-statistic. Degrees of freedom are approximated using the
@ -739,7 +739,7 @@ public interface TTest {
* at the 99% level, first verify that the measured mean of
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
* and then use
* <br><code>tTest(sampleStats1, sampleStats2, 0.005) </code>
* <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>

View File

@ -123,7 +123,7 @@ public class TTestImpl implements TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be rejected with
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
* <code>alpha / 2</code>
* <code>alpha * 2</code>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the test depends on the assumptions of the parametric
@ -420,7 +420,7 @@ public class TTestImpl implements TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be
* rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2</code>
* perform a 1-sided test, use <code>alpha * 2</code>
* <p>
* <strong>Examples:</strong><br><ol>
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
@ -429,7 +429,7 @@ public class TTestImpl implements TTest {
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
* at the 99% level, first verify that the measured sample mean is less
* than <code>mu</code> and then use
* <br><code>tTest(mu, sample, 0.005) </code>
* <br><code>tTest(mu, sample, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -501,7 +501,7 @@ public class TTestImpl implements TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis can be rejected with
* confidence <code>1 - alpha</code>. To perform a 1-sided test, use
* <code>alpha / 2.</code>
* <code>alpha * 2.</code>
* <p>
* <strong>Examples:</strong><br><ol>
* <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
@ -510,7 +510,7 @@ public class TTestImpl implements TTest {
* <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
* at the 99% level, first verify that the measured sample mean is less
* than <code>mu</code> and then use
* <br><code>tTest(mu, sampleStats, 0.005) </code>
* <br><code>tTest(mu, sampleStats, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -656,10 +656,10 @@ public class TTestImpl implements TTest {
* the 95% level, use
* <br><code>tTest(sample1, sample2, 0.05). </code>
* </li>
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,
* first verify that the measured mean of <code>sample 1</code> is less
* than the mean of <code>sample 2</code> and then use
* <br><code>tTest(sample1, sample2, 0.005) </code>
* <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code> at
* the 99% level, first verify that the measured mean of <code>sample 1</code>
* is less than the mean of <code>sample 2</code> and then use
* <br><code>tTest(sample1, sample2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -703,7 +703,7 @@ public class TTestImpl implements TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis that the means are
* equal can be rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2.</code> To perform the test
* perform a 1-sided test, use <code>alpha * 2.</code> To perform the test
* without the assumption of equal subpopulation variances, use
* {@link #tTest(double[], double[], double)}.
* <p>
@ -719,7 +719,7 @@ public class TTestImpl implements TTest {
* at the 99% level, first verify that the measured mean of
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
* and then use
* <br><code>tTest(sample1, sample2, 0.005) </code>
* <br><code>tTest(sample1, sample2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>
@ -855,7 +855,7 @@ public class TTestImpl implements TTest {
* <p>
* Returns <code>true</code> iff the null hypothesis that the means are
* equal can be rejected with confidence <code>1 - alpha</code>. To
* perform a 1-sided test, use <code>alpha / 2</code>
* perform a 1-sided test, use <code>alpha * 2</code>
* <p>
* See {@link #t(double[], double[])} for the formula used to compute the
* t-statistic. Degrees of freedom are approximated using the
@ -871,7 +871,7 @@ public class TTestImpl implements TTest {
* at the 99% level, first verify that the measured mean of
* <code>sample 1</code> is less than the mean of <code>sample 2</code>
* and then use
* <br><code>tTest(sampleStats1, sampleStats2, 0.005) </code>
* <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>
* </li></ol>
* <p>
* <strong>Usage Note:</strong><br>

View File

@ -500,7 +500,7 @@ testStatistic.pairedT(sample1, sample2);
</source>
</p>
<p>
To compute the (one-sided) p-value:
To compute the p-value:
<source>
testStatistic.pairedTTest(sample1, sample2);
</source>
@ -515,7 +515,7 @@ testStatistic.pairedTTest(sample1, sample2, .05);
returned by <code>testStatistic.pairedTTest(sample1, sample2)</code>
is less than <code>.05</code>
</dd>
<dd><strong>Example 2: </strong> unpaired, two-sample t-test using
<dd><strong>Example 2: </strong> unpaired, two-sided, two-sample t-test using
<code>StatisticalSummary</code> instances, without assuming that
subpopulation variances are equal.
<p>
@ -543,7 +543,7 @@ testStatistic.t(summary1, summary2);
</source>
</p>
<p>
To compute the (one-sided) p-value:
To compute the p-value:
<source>
testStatistic.tTest(sample1, sample2);
</source>