Use "BrentSolver" implementation from "Commons Numbers".

This commit is contained in:
Gilles Sadowski 2019-06-09 09:56:52 +02:00
parent 49469f756d
commit 4b0f52c0dd
3 changed files with 22 additions and 141 deletions

View File

@ -413,6 +413,12 @@
<version>1.0-SNAPSHOT</version> <version>1.0-SNAPSHOT</version>
</dependency> </dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-numbers-rootfinder</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
<dependency> <dependency>
<groupId>org.apache.commons</groupId> <groupId>org.apache.commons</groupId>
<artifactId>commons-rng-client-api</artifactId> <artifactId>commons-rng-client-api</artifactId>

View File

@ -94,150 +94,25 @@ public class BrentSolver extends AbstractUnivariateSolver {
throws NoBracketingException, throws NoBracketingException,
TooManyEvaluationsException, TooManyEvaluationsException,
NumberIsTooLargeException { NumberIsTooLargeException {
double min = getMin(); final double min = getMin();
double max = getMax(); final double max = getMax();
final double initial = getStartValue(); final double initial = getStartValue();
final double functionValueAccuracy = getFunctionValueAccuracy();
verifySequence(min, initial, max); final org.apache.commons.numbers.rootfinder.BrentSolver rf =
new org.apache.commons.numbers.rootfinder.BrentSolver(getRelativeAccuracy(),
getAbsoluteAccuracy(),
getFunctionValueAccuracy());
// Return the initial guess if it is good enough. double root = Double.NaN;
double yInitial = computeObjectiveValue(initial); try {
if (FastMath.abs(yInitial) <= functionValueAccuracy) { root = rf.findRoot(arg -> computeObjectiveValue(arg),
return initial; min, initial, max);
} catch (IllegalArgumentException e) {
// Redundant calls in order to throw the expected exceptions.
verifySequence(min, initial, max);
verifyBracketing(min, max);
} }
// Return the first endpoint if it is good enough. return root;
double yMin = computeObjectiveValue(min);
if (FastMath.abs(yMin) <= functionValueAccuracy) {
return min;
}
// Reduce interval if min and initial bracket the root.
if (yInitial * yMin < 0) {
return brent(min, initial, yMin, yInitial);
}
// Return the second endpoint if it is good enough.
double yMax = computeObjectiveValue(max);
if (FastMath.abs(yMax) <= functionValueAccuracy) {
return max;
}
// Reduce interval if initial and max bracket the root.
if (yInitial * yMax < 0) {
return brent(initial, max, yInitial, yMax);
}
throw new NoBracketingException(min, max, yMin, yMax);
}
/**
* Search for a zero inside the provided interval.
* This implementation is based on the algorithm described at page 58 of
* the book
* <blockquote>
* <b>Algorithms for Minimization Without Derivatives</b>,
* <it>Richard P. Brent</it>,
* Dover 0-486-41998-3
* </blockquote>
*
* @param lo Lower bound of the search interval.
* @param hi Higher bound of the search interval.
* @param fLo Function value at the lower bound of the search interval.
* @param fHi Function value at the higher bound of the search interval.
* @return the value where the function is zero.
*/
private double brent(double lo, double hi,
double fLo, double fHi) {
double a = lo;
double fa = fLo;
double b = hi;
double fb = fHi;
double c = a;
double fc = fa;
double d = b - a;
double e = d;
final double t = getAbsoluteAccuracy();
final double eps = getRelativeAccuracy();
while (true) {
if (FastMath.abs(fc) < FastMath.abs(fb)) {
a = b;
b = c;
c = a;
fa = fb;
fb = fc;
fc = fa;
}
final double tol = 2 * eps * FastMath.abs(b) + t;
final double m = 0.5 * (c - b);
if (FastMath.abs(m) <= tol ||
Precision.equals(fb, 0)) {
return b;
}
if (FastMath.abs(e) < tol ||
FastMath.abs(fa) <= FastMath.abs(fb)) {
// Force bisection.
d = m;
e = d;
} else {
double s = fb / fa;
double p;
double q;
// The equality test (a == c) is intentional,
// it is part of the original Brent's method and
// it should NOT be replaced by proximity test.
if (a == c) {
// Linear interpolation.
p = 2 * m * s;
q = 1 - s;
} else {
// Inverse quadratic interpolation.
q = fa / fc;
final double r = fb / fc;
p = s * (2 * m * q * (q - r) - (b - a) * (r - 1));
q = (q - 1) * (r - 1) * (s - 1);
}
if (p > 0) {
q = -q;
} else {
p = -p;
}
s = e;
e = d;
if (p >= 1.5 * m * q - FastMath.abs(tol * q) ||
p >= FastMath.abs(0.5 * s * q)) {
// Inverse quadratic interpolation gives a value
// in the wrong direction, or progress is slow.
// Fall back to bisection.
d = m;
e = d;
} else {
d = p / q;
}
}
a = b;
fa = fb;
if (FastMath.abs(d) > tol) {
b += d;
} else if (m > 0) {
b += tol;
} else {
b -= tol;
}
fb = computeObjectiveValue(b);
if ((fb > 0 && fc > 0) ||
(fb <= 0 && fc <= 0)) {
c = a;
fc = fa;
d = b - a;
e = d;
}
}
} }
} }

View File

@ -265,6 +265,6 @@ public final class BrentSolverTest {
BrentSolver solver = new BrentSolver(); BrentSolver solver = new BrentSolver();
final double result = solver.solve(99, f, 1, 1e30, 1 + 1e-10); final double result = solver.solve(99, f, 1, 1e30, 1 + 1e-10);
Assert.assertEquals(804.93558250, result, 1e-8); Assert.assertEquals(804.93558250, result, solver.getAbsoluteAccuracy());
} }
} }