Removed function "rescue" and "case 190" in function "bobyqb".


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1158448 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2011-08-16 21:15:56 +00:00
parent fca3f676ec
commit 4b1377907d
2 changed files with 9 additions and 596 deletions

View File

@ -664,37 +664,6 @@ public class BOBYQAOptimizer
// useful safeguard, but is not invoked in most applications of BOBYQA. // useful safeguard, but is not invoked in most applications of BOBYQA.
} }
case 190: {
nfsav = getEvaluations();
kbase = trustRegionCenterInterpolationPointIndex;
rescue(xbase, xpt,
fval, xopt, gopt, hq, pq, bmat,
zmat, sl, su, delta,
vlag);
// XOPT is updated now in case the branch below to label 720 is taken.
// Any updating of GOPT occurs after the branch below to label 20, which
// leads to a trust region iteration as does the branch to label 60.
xoptsq = ZERO;
if (trustRegionCenterInterpolationPointIndex != kbase) {
for (int i = 0; i < n; i++) {
xopt.setEntry(i, xpt.getEntry(trustRegionCenterInterpolationPointIndex, i));
// Computing 2nd power
final double d1 = xopt.getEntry(i);
xoptsq += d1 * d1;
}
}
nresc = getEvaluations();
if (nfsav < getEvaluations()) {
nfsav = getEvaluations();
state = 20; break;
}
if (ntrits > 0) {
state = 60; break;
}
}
case 210: { case 210: {
// Pick two alternative vectors of variables, relative to XBASE, that // Pick two alternative vectors of variables, relative to XBASE, that
// are suitable as new positions of the KNEW-th interpolation point. // are suitable as new positions of the KNEW-th interpolation point.
@ -776,8 +745,8 @@ public class BOBYQAOptimizer
if (ntrits == 0) { if (ntrits == 0) {
// Computing 2nd power // Computing 2nd power
d__1 = vlag.getEntry(knew); // XXX Same statement as a few lines below? final double d1 = vlag.getEntry(knew);
denom = d__1 * d__1 + alpha * beta; denom = d1 * d1 + alpha * beta;
if (denom < cauchy && cauchy > ZERO) { if (denom < cauchy && cauchy > ZERO) {
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
xnew.setEntry(i, xalt.getEntry(i)); xnew.setEntry(i, xalt.getEntry(i));
@ -786,18 +755,9 @@ public class BOBYQAOptimizer
cauchy = ZERO; // XXX Useful statement? cauchy = ZERO; // XXX Useful statement?
state = 230; break; state = 230; break;
} }
// Computing 2nd power
d__1 = vlag.getEntry(knew); // XXX Same statement as a few lines above?
if (denom <= HALF * (d__1 * d__1)) {
if (getEvaluations() > nresc) {
state = 190; break;
}
throw new MathIllegalStateException(LocalizedFormats.TOO_MUCH_CANCELLATION, vquad);
}
// Alternatively, if NTRITS is positive, then set KNEW to the index of // Alternatively, if NTRITS is positive, then set KNEW to the index of
// the next interpolation point to be deleted to make room for a trust // the next interpolation point to be deleted to make room for a trust
// region step. Again RESCUE may be called if rounding errors have damaged // region step. Again RESCUE may be called if rounding errors have damaged_
// the chosen denominator, which is the reason for attempting to select // the chosen denominator, which is the reason for attempting to select
// KNEW before calculating the next value of the objective function. // KNEW before calculating the next value of the objective function.
@ -843,12 +803,6 @@ public class BOBYQAOptimizer
d__2 = temp * (d__3 * d__3); d__2 = temp * (d__3 * d__3);
biglsq = Math.max(d__1, d__2); biglsq = Math.max(d__1, d__2);
} }
if (scaden <= HALF * biglsq) {
if (getEvaluations() > nresc) {
state = 190; break;
}
throw new MathIllegalStateException(LocalizedFormats.TOO_MUCH_CANCELLATION, vquad);
}
} }
// Put the variables for the next calculation of the objective function // Put the variables for the next calculation of the objective function
@ -1277,6 +1231,9 @@ public class BOBYQAOptimizer
f = fval.getEntry(trustRegionCenterInterpolationPointIndex); f = fval.getEntry(trustRegionCenterInterpolationPointIndex);
} }
return f; return f;
}
default: {
throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
}} }}
} // bobyqb } // bobyqb
@ -1896,543 +1853,6 @@ public class BOBYQAOptimizer
} while (getEvaluations() < npt); } while (getEvaluations() < npt);
} // prelim } // prelim
// ----------------------------------------------------------------------------------------
/**
* The first NDIM+NPT elements of the array W are used for working space.
* The final elements of BMAT and ZMAT are set in a well-conditioned way
* to the values that are appropriate for the new interpolation points.
* The elements of GOPT, HQ and PQ are also revised to the values that are
* appropriate to the final quadratic model.
*
* The arguments N, NPT, XL, XU, IPRINT, MAXFUN, XBASE, XPT, FVAL, XOPT,
* GOPT, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU have the same meanings as
* the corresponding arguments of BOBYQB on the entry to RESCUE.
* NF is maintained as the number of calls of CALFUN so far, except that
* NF is set to -1 if the value of MAXFUN prevents further progress.
* KOPT is maintained so that FVAL(KOPT) is the least calculated function
* value. Its correct value must be given on entry. It is updated if a
* new least function value is found, but the corresponding changes to
* XOPT and GOPT have to be made later by the calling program.
* DELTA is the current trust region radius.
* VLAG is a working space vector that will be used for the values of the
* provisional Lagrange functions at each of the interpolation points.
* They are part of a product that requires VLAG to be of length NDIM.
* PTSAUX is also a working space array. For J=1,2,...,N, PTSAUX(1,J) and
* PTSAUX(2,J) specify the two positions of provisional interpolation
* points when a nonzero step is taken along e_J (the J-th coordinate
* direction) through XBASE+XOPT, as specified below. Usually these
* steps have length DELTA, but other lengths are chosen if necessary
* in order to satisfy the given bounds on the variables.
* PTSID is also a working space array. It has NPT components that denote
* provisional new positions of the original interpolation points, in
* case changes are needed to restore the linear independence of the
* interpolation conditions. The K-th point is a candidate for change
* if and only if PTSID(K) is nonzero. In this case let p and q be the
* int parts of PTSID(K) and (PTSID(K)-p) multiplied by N+1. If p
* and q are both positive, the step from XBASE+XOPT to the new K-th
* interpolation point is PTSAUX(1,p)*e_p + PTSAUX(1,q)*e_q. Otherwise
* the step is PTSAUX(1,p)*e_p or PTSAUX(2,q)*e_q in the cases q=0 or
* p=0, respectively.
* @param xbase
* @param xpt
* @param fval
* @param xopt
* @param gopt
* @param hq
* @param pq
* @param bmat
* @param zmat
* @param sl
* @param su
* @param delta
* @param vlag
*/
private void rescue(
ArrayRealVector xbase,
Array2DRowRealMatrix xpt,
ArrayRealVector fval,
ArrayRealVector xopt,
ArrayRealVector gopt,
ArrayRealVector hq,
ArrayRealVector pq,
Array2DRowRealMatrix bmat,
Array2DRowRealMatrix zmat,
ArrayRealVector sl,
ArrayRealVector su,
double delta,
ArrayRealVector vlag
) {
// System.out.println("rescue"); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int ndim = bmat.getRowDimension();
final Array2DRowRealMatrix ptsaux = new Array2DRowRealMatrix(n, 2);
final ArrayRealVector ptsid = new ArrayRealVector(npt);
final ArrayRealVector work1 = new ArrayRealVector(npt); // Originally: w(1 .. npt).
final ArrayRealVector work2 = new ArrayRealVector(n); // Originally: w(npt+1 .. npt+n).
final ArrayRealVector work3 = new ArrayRealVector(npt); // Originally: w(npt+n+1 .. npt+n+npt).
final int np = n + 1;
final double sfrac = HALF / (double) np;
final int nptm = npt - np;
// System generated locals
double d__1, d__2, d__3, d__4;
// Local variables
double f;
int ih, jp, ip, iq;
double xp = 0, xq = 0, den = 0;
int ihp = 0;
int jpn, kpt;
double sum = 0, diff = 0, beta = 0;
int kold;
double winc;
int nrem, knew;
double temp, bsum;
double hdiag = 0, fbase = 0, denom = 0, vquad = 0, sumpq = 0;
double dsqmin, distsq, vlmxsq;
// Set some constants.
// Function Body
// Shift the interpolation points so that XOPT becomes the origin, and set
// the elements of ZMAT to zero. The value of SUMPQ is required in the
// updating of HQ below. The squares of the distances from XOPT to the
// other interpolation points are set at the end of W. Increments of WINC
// may be added later to these squares to balance the consideration of
// the choice of point that is going to become current.
sumpq = ZERO;
winc = ZERO;
for (int k = 0; k < npt; k++) {
distsq = ZERO;
for (int j = 0; j < n; j++) {
xpt.setEntry(k, j, xpt.getEntry(k, j) - xopt.getEntry(j));
// Computing 2nd power
final double d1 = xpt.getEntry(k, j);
distsq += d1 * d1;
}
sumpq += pq.getEntry(k);
work3.setEntry(k, distsq);
winc = Math.max(winc, distsq);
for (int j = 0; j < nptm; j++) {
zmat.setEntry(k, j, ZERO);
}
}
// Update HQ so that HQ and PQ define the second derivatives of the model
// after XBASE has been shifted to the trust region centre.
ih = 0;
for (int j = 0; j < n; j++) {
work2.setEntry(j, HALF * sumpq * xopt.getEntry(j));
for (int k = 0; k < npt; k++) {
work2.setEntry(j, work2.getEntry(j) + pq.getEntry(k) * xpt.getEntry(k, j));
}
for (int i = 0; i <= j; i++) {
hq.setEntry(ih, hq.getEntry(ih) + work2.getEntry(i) * xopt.getEntry(j) + work2.getEntry(j) * xopt.getEntry(i));
ih++;
}
}
// Shift XBASE, SL, SU and XOPT. Set the elements of BMAT to zero, and
// also set the elements of PTSAUX.
for (int j = 0; j < n; j++) {
xbase.setEntry(j, xbase.getEntry(j) + xopt.getEntry(j));
sl.setEntry(j, sl.getEntry(j) - xopt.getEntry(j));
su.setEntry(j, su.getEntry(j) - xopt.getEntry(j));
xopt.setEntry(j, ZERO);
// Computing MIN
d__1 = delta;
d__2 = su.getEntry(j);
ptsaux.setEntry(j, 0, Math.min(d__1, d__2));
// Computing MAX
d__1 = -delta;
d__2 = sl.getEntry(j);
ptsaux.setEntry(j, 1, Math.max(d__1, d__2));
if (ptsaux.getEntry(j, 0) + ptsaux.getEntry(j, 1) < ZERO) {
temp = ptsaux.getEntry(j, 0);
ptsaux.setEntry(j, 0, ptsaux.getEntry(j, 1));
ptsaux.setEntry(j, 1, temp);
}
d__2 = ptsaux.getEntry(j, 1);
d__1 = ptsaux.getEntry(j, 0);
if (Math.abs(d__2) < HALF * Math.abs(d__1)) {
ptsaux.setEntry(j, 1, HALF * ptsaux.getEntry(j, 0));
}
for (int i = 0; i < ndim; i++) {
bmat.setEntry(i, j, ZERO);
}
}
fbase = fval.getEntry(trustRegionCenterInterpolationPointIndex);
// Set the identifiers of the artificial interpolation points that are
// along a coordinate direction from XOPT, and set the corresponding
// nonzero elements of BMAT and ZMAT.
ptsid.setEntry(0, sfrac);
for (int j = 0; j < n; j++) {
jp = j + 1;
jpn = jp + n;
ptsid.setEntry(jp, 1.0 + j + sfrac);
if (jpn <= npt) {
ptsid.setEntry(jpn, (1.0+j) / (double) np + sfrac);
temp = ONE / (ptsaux.getEntry(j, 0) - ptsaux.getEntry(j, 1));
bmat.setEntry(jp, j, -temp + ONE / ptsaux.getEntry(j, 0));
bmat.setEntry(jpn, j, temp + ONE / ptsaux.getEntry(j, 1));
bmat.setEntry(0, j, -bmat.getEntry(jp, j) - bmat.getEntry(jpn, j));
final double d1 = ptsaux.getEntry(j, 0) * ptsaux.getEntry(j, 1);
zmat.setEntry(0, j, Math.sqrt(TWO) / Math.abs(d1));
zmat.setEntry(jp, j, zmat.getEntry(0, j) *
ptsaux.getEntry(j, 1) * temp);
zmat.setEntry(jpn, j, -zmat.getEntry(0, j) *
ptsaux.getEntry(j, 0) * temp);
} else {
bmat.setEntry(0, j, -ONE / ptsaux.getEntry(j, 0));
bmat.setEntry(jp, j, ONE / ptsaux.getEntry(j, 0));
// Computing 2nd power
final double d1 = ptsaux.getEntry(j, 0);
bmat.setEntry(j + npt, j, -HALF * (d1 * d1));
}
}
// Set any remaining identifiers with their nonzero elements of ZMAT.
if (npt >= n + np) {
for (int k = np << 1; k <= npt; k++) {
int iw = (int) (((double) (k - np) - HALF) / (double) n);
ip = k - np - iw * n;
iq = ip + iw;
if (iq > n) {
iq -= n;
}
ptsid.setEntry(k, (double) ip + (double) iq / (double) np +
sfrac);
temp = ONE / (ptsaux.getEntry(ip, 0) * ptsaux.getEntry(iq, 0));
zmat.setEntry(0, (k - np), temp);
zmat.setEntry(ip + 1, k - np, -temp);
zmat.setEntry(iq + 1, k - np, -temp);
zmat.setEntry(k, k - np, temp);
}
}
nrem = npt;
kold = 1;
knew = trustRegionCenterInterpolationPointIndex;
// Reorder the provisional points in the way that exchanges PTSID(KOLD)
// with PTSID(KNEW).
int state = 80;
for(;;) switch (state) {
case 80: {
for (int j = 0; j < n; j++) {
temp = bmat.getEntry(kold, j);
bmat.setEntry(kold, j, bmat.getEntry(knew, j));
bmat.setEntry(knew, j, temp);
}
for (int j = 0; j < nptm; j++) {
temp = zmat.getEntry(kold, j);
zmat.setEntry(kold, j, zmat.getEntry(knew, j));
zmat.setEntry(knew, j, temp);
}
ptsid.setEntry(kold, ptsid.getEntry(knew));
ptsid.setEntry(knew, ZERO);
work3.setEntry(knew, ZERO);
--nrem;
if (knew != trustRegionCenterInterpolationPointIndex) {
temp = vlag.getEntry(kold);
vlag.setEntry(kold, vlag.getEntry(knew));
vlag.setEntry(knew, temp);
// Update the BMAT and ZMAT matrices so that the status of the KNEW-th
// interpolation point can be changed from provisional to original. The
// branch to label 350 occurs if all the original points are reinstated.
// The nonnegative values of W(NDIM+K) are required in the search below.
update(bmat, zmat, vlag,
beta, denom, knew);
if (nrem == 0) {
return;
}
for (int k = 0; k < npt; k++) {
work3.setEntry(k, Math.abs(work3.getEntry(k)));
}
}
// Pick the index KNEW of an original interpolation point that has not
// yet replaced one of the provisional interpolation points, giving
// attention to the closeness to XOPT and to previous tries with KNEW.
}
case 120: {
dsqmin = ZERO;
for (int k = 0; k < npt; k++) {
final double v1 = work3.getEntry(k);
if (v1 > ZERO) {
if (dsqmin == ZERO ||
v1 < dsqmin) {
knew = k;
dsqmin = v1;
}
}
}
if (dsqmin == ZERO) {
state = 260; break;
}
// Form the W-vector of the chosen original interpolation point.
for (int j = 0; j < n; j++) {
work2.setEntry(j, xpt.getEntry(knew, j));
}
for (int k = 0; k < npt; k++) {
sum = ZERO;
if (k == trustRegionCenterInterpolationPointIndex) {
} else if (ptsid.getEntry(k) == ZERO) {
for (int j = 0; j < n; j++) {
sum += work2.getEntry(j) * xpt.getEntry(k, j);
}
} else {
ip = (int) ptsid.getEntry(k);
if (ip > 0) {
sum = work2.getEntry(ip - 1) * ptsaux.getEntry(ip - 1, 0);
}
iq = (int) ((double) np * ptsid.getEntry(k) - (double) (ip * np));
if (iq > 0) {
int iw = 0;
if (ip == 0) {
iw = 1;
}
sum += work2.getEntry(iq - 1) * ptsaux.getEntry(iq - 1, iw);
}
}
work1.setEntry(k, HALF * sum * sum);
}
// Calculate VLAG and BETA for the required updating of the H matrix if
// XPT(KNEW,.) is reinstated in the set of interpolation points.
for (int k = 0; k < npt; k++) {
sum = ZERO;
for (int j = 0; j < n; j++) {
sum += bmat.getEntry(k, j) * work2.getEntry(j);
}
vlag.setEntry(k, sum);
}
beta = ZERO;
for (int j = 0; j < nptm; j++) {
sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += zmat.getEntry(k, j) * work1.getEntry(k);
}
beta -= sum * sum;
for (int k = 0; k < npt; k++) {
vlag.setEntry(k, vlag.getEntry(k) + sum * zmat.getEntry(k, j));
}
}
bsum = ZERO;
distsq = ZERO;
for (int j = 0; j < n; j++) {
sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += bmat.getEntry(k, j) * work1.getEntry(k);
}
jp = j + npt;
bsum += sum * work2.getEntry(j);
for (int k = 0; k < n; k++) {
sum += bmat.getEntry(npt + k, j) * work2.getEntry(k);
}
bsum += sum * work2.getEntry(j);
vlag.setEntry(jp, sum);
// Computing 2nd power
final double d1 = xpt.getEntry(knew, j);
distsq += d1 * d1;
}
beta = HALF * distsq * distsq + beta - bsum;
vlag.setEntry(trustRegionCenterInterpolationPointIndex, vlag.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);
// KOLD is set to the index of the provisional interpolation point that is
// going to be deleted to make way for the KNEW-th original interpolation
// point. The choice of KOLD is governed by the avoidance of a small value
// of the denominator in the updating calculation of UPDATE.
denom = ZERO;
vlmxsq = ZERO;
for (int k = 0; k < npt; k++) {
if (ptsid.getEntry(k) != ZERO) {
hdiag = ZERO;
for (int j = 0; j < nptm; j++) {
// Computing 2nd power
final double d1 = zmat.getEntry(k, j);
hdiag += d1 * d1;
}
// Computing 2nd power
final double d1 = vlag.getEntry(k);
den = beta * hdiag + d1 * d1;
if (den > denom) {
kold = k;
denom = den;
}
}
// Computing MAX
// Computing 2nd power
final double d3 = vlag.getEntry(k);
vlmxsq = Math.max(vlmxsq , d3 * d3);
}
if (denom <= vlmxsq * .01) {
work3.setEntry(knew, -work3.getEntry(knew) - winc);
state = 120; break;
}
state = 80; break;
// When label 260 is reached, all the final positions of the interpolation
// points have been chosen although any changes have not been included yet
// in XPT. Also the final BMAT and ZMAT matrices are complete, but, apart
// from the shift of XBASE, the updating of the quadratic model remains to
// be done. The following cycle through the new interpolation points begins
// by putting the new point in XPT(KPT,.) and by setting PQ(KPT) to zero,
// except that a RETURN occurs if MAXFUN prohibits another value of F.
}
case 260: {
for (kpt = 0; kpt < npt; kpt++) {
if (ptsid.getEntry(kpt) == ZERO) {
continue;
}
ih = 0;
for (int j = 0; j < n; j++) {
work2.setEntry(j, xpt.getEntry(kpt, j));
xpt.setEntry(kpt, j, ZERO);
temp = pq.getEntry(kpt) * work2.getEntry(j);
for (int i = 0; i <= j; i++) {
hq.setEntry(ih, hq.getEntry(ih) + temp * work2.getEntry(i));
ih++;
}
}
pq.setEntry(kpt, ZERO);
ip = (int) ptsid.getEntry(kpt);
iq = (int) ((double) np * ptsid.getEntry(kpt) - (double) (ip * np));
if (ip > 0) {
xp = ptsaux.getEntry(ip - 1, 0);
xpt.setEntry(kpt, ip - 1, xp);
}
if (iq > 0) {
xq = ptsaux.getEntry(iq - 1, 0);
if (ip == 0) {
xq = ptsaux.getEntry(iq - 1, 1);
}
xpt.setEntry(kpt, iq - 1, xq);
}
// Set VQUAD to the value of the current model at the new point.
vquad = fbase;
if (ip > 0) {
ihp = (ip + ip * ip) / 2;
vquad += xp * (gopt.getEntry(ip - 1) + HALF * xp * hq.getEntry(ihp - 1));
}
if (iq > 0) {
int ihq = (iq + iq * iq) / 2;
vquad += xq * (gopt.getEntry(iq - 1) + HALF * xq * hq.getEntry(ihq - 1));
if (ip > 0) {
int iiw = Math.max(ihp, ihq) - Math.abs(ip - iq);
vquad += xp * xq * hq.getEntry(iiw - 1);
}
}
for (int k = 0; k < npt; k++) {
temp = ZERO;
if (ip > 0) {
temp += xp * xpt.getEntry(k, ip - 1);
}
if (iq > 0) {
temp += xq * xpt.getEntry(k, iq - 1);
}
vquad += HALF * pq.getEntry(k) * temp * temp;
}
// Calculate F at the new interpolation point, and set DIFF to the factor
// that is going to multiply the KPT-th Lagrange function when the model
// is updated to provide interpolation to the new function value.
for (int i = 0; i < n; i++) {
// Computing MIN
// Computing MAX
d__3 = lowerBound[i];
d__4 = xbase.getEntry(i) + xpt.getEntry(kpt, i);
d__1 = Math.max(d__3, d__4);
d__2 = upperBound[i];
work2.setEntry(i, Math.min(d__1, d__2));
if (xpt.getEntry(kpt, i) == sl.getEntry(i)) {
work2.setEntry(i, lowerBound[i]);
}
if (xpt.getEntry(kpt, i) == su.getEntry(i)) {
work2.setEntry(i, upperBound[i]);
}
}
f = computeObjectiveValue(work2.getData());
if (!isMinimize)
f = -f;
fval.setEntry(kpt, f);
if (f < fval.getEntry(trustRegionCenterInterpolationPointIndex)) {
trustRegionCenterInterpolationPointIndex = kpt;
}
diff = f - vquad;
// Update the quadratic model. The RETURN from the subroutine occurs when
// all the new interpolation points are included in the model.
for (int i = 0; i < n; i++) {
gopt.setEntry(i, gopt.getEntry(i) + diff * bmat.getEntry(kpt, i));
}
for (int k = 0; k < npt; k++) {
sum = ZERO;
for (int j = 0; j < nptm; j++) {
sum += zmat.getEntry(k, j) * zmat.getEntry(kpt, j);
}
temp = diff * sum;
if (ptsid.getEntry(k) == ZERO) {
pq.setEntry(k, pq.getEntry(k) + temp);
} else {
ip = (int) ptsid.getEntry(k);
iq = (int) ((double) np * ptsid.getEntry(k) - (double) (ip * np));
int ihq = (iq * iq + iq) / 2;
if (ip == 0) {
// Computing 2nd power
final double d1 = ptsaux.getEntry(iq - 1, 1);
hq.setEntry(ihq - 1, hq.getEntry(ihq - 1) + temp * (d1 * d1));
} else {
ihp = (ip * ip + ip) / 2;
// Computing 2nd power
final double d1 = ptsaux.getEntry(ip - 1, 0);
hq.setEntry(ihp - 1, hq.getEntry(ihp - 1) + temp * (d1 * d1));
if (iq > 0) {
// Computing 2nd power
final double d2 = ptsaux.getEntry(iq - 1, 0);
hq.setEntry(ihq - 1, hq.getEntry(ihq - 1) + temp * (d2 * d2));
int iw = Math.max(ihp,ihq) - Math.abs(iq - ip);
hq.setEntry(iw - 1, hq.getEntry(iw - 1)
+ temp * ptsaux.getEntry(ip - 1, 0) * ptsaux.getEntry(iq - 1, 0));
}
}
}
}
ptsid.setEntry(kpt, ZERO);
}
return;
}}
} // rescue
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
@ -2966,6 +2386,9 @@ public class BOBYQAOptimizer
hred.setEntry(i, hs.getEntry(i)); hred.setEntry(i, hs.getEntry(i));
} }
state = 120; break; state = 120; break;
}
default: {
throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox");
}} }}
} // trsbox } // trsbox

View File

@ -75,16 +75,6 @@ public class BOBYQAOptimizerTest {
1e-13, 1e-6, lowMaxEval, null); 1e-13, 1e-6, lowMaxEval, null);
} }
@Test(expected=TooManyEvaluationsException.class)
public void testRescue() {
double[] startPoint = point(DIM, 1);
double[][] boundaries = null;
RealPointValuePair expected = new RealPointValuePair(point(DIM, 0), 0);
doTest(new MinusElli(), startPoint, boundaries,
GoalType.MINIMIZE,
1e-13, 1e-6, 1000, expected);
}
@Test @Test
public void testRosen() { public void testRosen() {
double[] startPoint = point(DIM,0.1); double[] startPoint = point(DIM,0.1);