removed factories

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_0@651251 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2008-04-24 13:13:31 +00:00
parent 6c76ad2d07
commit 4c7e51fd41
2 changed files with 0 additions and 365 deletions

View File

@ -1,206 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
/**
* This factory provids the means to create common statistical distributions.
* The following distributions are supported:
* <ul>
* <li>Binomial</li>
* <li>Cauchy</li>
* <li>Chi-Squared</li>
* <li>Exponential</li>
* <li>F</li>
* <li>Gamma</li>
* <li>HyperGeometric</li>
* <li>Poisson</li>
* <li>Normal</li>
* <li>Student's t</li>
* <li>Weibull</li>
* <li>Pascal</li>
* </ul>
*
* Common usage:<pre>
* DistributionFactory factory = DistributionFactory.newInstance();
*
* // create a Chi-Square distribution with 5 degrees of freedom.
* ChiSquaredDistribution chi = factory.createChiSquareDistribution(5.0);
* </pre>
*
* @version $Revision$ $Date$
* @deprecated pluggability of distribution instances is now provided through
* constructors and setters.
*/
public abstract class DistributionFactory {
/**
* Default constructor.
*/
protected DistributionFactory() {
super();
}
/**
* Create an instance of a <code>DistributionFactory</code>
* @return a new factory.
*/
public static DistributionFactory newInstance() {
return new DistributionFactoryImpl();
}
/**
* Create a binomial distribution with the given number of trials and
* probability of success.
*
* @param numberOfTrials the number of trials.
* @param probabilityOfSuccess the probability of success
* @return a new binomial distribution
*/
public abstract BinomialDistribution createBinomialDistribution(
int numberOfTrials, double probabilityOfSuccess);
/**
* Create a Pascal distribution with the given number of successes and
* probability of success.
*
* @param numberOfSuccesses the number of successes.
* @param probabilityOfSuccess the probability of success
* @return a new Pascal distribution
* @since 1.2
*/
public PascalDistribution createPascalDistribution(
int numberOfSuccesses, double probabilityOfSuccess) {
return new PascalDistributionImpl(numberOfSuccesses, probabilityOfSuccess);
}
/**
* Create a new cauchy distribution with the given median and scale.
* @param median the median of the distribution
* @param scale the scale
* @return a new cauchy distribution
* @since 1.1
*/
public CauchyDistribution createCauchyDistribution(
double median, double scale)
{
return new CauchyDistributionImpl(median, scale);
}
/**
* Create a new chi-square distribution with the given degrees of freedom.
*
* @param degreesOfFreedom degrees of freedom
* @return a new chi-square distribution
*/
public abstract ChiSquaredDistribution createChiSquareDistribution(
double degreesOfFreedom);
/**
* Create a new exponential distribution with the given degrees of freedom.
*
* @param mean mean
* @return a new exponential distribution
*/
public abstract ExponentialDistribution createExponentialDistribution(
double mean);
/**
* Create a new F-distribution with the given degrees of freedom.
*
* @param numeratorDegreesOfFreedom numerator degrees of freedom
* @param denominatorDegreesOfFreedom denominator degrees of freedom
* @return a new F-distribution
*/
public abstract FDistribution createFDistribution(
double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom);
/**
* Create a new gamma distribution with the given shape and scale
* parameters.
*
* @param alpha the shape parameter
* @param beta the scale parameter
*
* @return a new gamma distribution
*/
public abstract GammaDistribution createGammaDistribution(
double alpha, double beta);
/**
* Create a new t distribution with the given degrees of freedom.
*
* @param degreesOfFreedom degrees of freedom
* @return a new t distribution
*/
public abstract TDistribution createTDistribution(double degreesOfFreedom);
/**
* Create a new hypergeometric distribution with the given the population
* size, the number of successes in the population, and the sample size.
*
* @param populationSize the population size
* @param numberOfSuccesses number of successes in the population
* @param sampleSize the sample size
* @return a new hypergeometric desitribution
*/
public abstract HypergeometricDistribution
createHypergeometricDistribution(int populationSize,
int numberOfSuccesses, int sampleSize);
/**
* Create a new normal distribution with the given mean and standard
* deviation.
*
* @param mean the mean of the distribution
* @param sd standard deviation
* @return a new normal distribution
*/
public abstract NormalDistribution
createNormalDistribution(double mean, double sd);
/**
* Create a new normal distribution with mean zero and standard
* deviation one.
*
* @return a new normal distribution.
*/
public abstract NormalDistribution createNormalDistribution();
/**
* Create a new Poisson distribution with poisson parameter lambda.
*
* @param lambda poisson parameter
* @return a new poisson distribution.
*/
public abstract PoissonDistribution
createPoissonDistribution(double lambda);
/**
* Create a new Weibull distribution with the given shape and scale
* parameters.
*
* @param alpha the shape parameter.
* @param beta the scale parameter.
* @return a new Weibull distribution.
* @since 1.1
*/
public WeibullDistribution createWeibullDistribution(
double alpha, double beta)
{
return new WeibullDistributionImpl(alpha, beta);
}
}

View File

@ -1,159 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
/**
* A concrete distribution factory. This is the default factory used by
* Commons-Math.
*
* @version $Revision$ $Date$
* @deprecated pluggability of distribution instances is now provided through
* constructors and setters.
*/
public class DistributionFactoryImpl extends DistributionFactory {
/**
* Default constructor. Package scope to prevent unwanted instantiation.
*/
public DistributionFactoryImpl() {
super();
}
/**
* Create a new chi-square distribution with the given degrees of freedom.
*
* @param degreesOfFreedom degrees of freedom
* @return a new chi-square distribution
*/
public ChiSquaredDistribution createChiSquareDistribution(
final double degreesOfFreedom) {
return new ChiSquaredDistributionImpl(degreesOfFreedom);
}
/**
* Create a new gamma distribution the given shape and scale parameters.
*
* @param alpha the shape parameter
* @param beta the scale parameter
* @return a new gamma distribution
*/
public GammaDistribution createGammaDistribution(
double alpha, double beta) {
return new GammaDistributionImpl(alpha, beta);
}
/**
* Create a new t distribution with the given degrees of freedom.
*
* @param degreesOfFreedom degrees of freedom
* @return a new t distribution.
*/
public TDistribution createTDistribution(double degreesOfFreedom) {
return new TDistributionImpl(degreesOfFreedom);
}
/**
* Create a new F-distribution with the given degrees of freedom.
*
* @param numeratorDegreesOfFreedom numerator degrees of freedom
* @param denominatorDegreesOfFreedom denominator degrees of freedom
* @return a new F-distribution
*/
public FDistribution createFDistribution(
double numeratorDegreesOfFreedom,
double denominatorDegreesOfFreedom) {
return new FDistributionImpl(numeratorDegreesOfFreedom,
denominatorDegreesOfFreedom);
}
/**
* Create a new exponential distribution with the given degrees of freedom.
*
* @param mean mean
* @return a new exponential distribution
*/
public ExponentialDistribution createExponentialDistribution(double mean) {
return new ExponentialDistributionImpl(mean);
}
/**
* Create a binomial distribution with the given number of trials and
* probability of success.
*
* @param numberOfTrials the number of trials
* @param probabilityOfSuccess the probability of success
* @return a new binomial distribution
*/
public BinomialDistribution createBinomialDistribution(
int numberOfTrials, double probabilityOfSuccess) {
return new BinomialDistributionImpl(numberOfTrials,
probabilityOfSuccess);
}
/**
* Create a new hypergeometric distribution with the given the population
* size, the number of successes in the population, and the sample size.
*
* @param populationSize the population size
* @param numberOfSuccesses number of successes in the population
* @param sampleSize the sample size
* @return a new hypergeometric desitribution
*/
public HypergeometricDistribution createHypergeometricDistribution(
int populationSize, int numberOfSuccesses, int sampleSize) {
return new HypergeometricDistributionImpl(populationSize,
numberOfSuccesses, sampleSize);
}
/**
* Create a new normal distribution with the given mean and standard
* deviation.
*
* @param mean the mean of the distribution
* @param sd standard deviation
* @return a new normal distribution
*/
public NormalDistribution createNormalDistribution(double mean, double sd) {
return new NormalDistributionImpl(mean, sd);
}
/**
* Create a new normal distribution with the mean zero and standard
* deviation one.
*
* @return a new normal distribution
*/
public NormalDistribution createNormalDistribution() {
return new NormalDistributionImpl();
}
/**
* Create a new Poisson distribution with poisson parameter lambda.
* <p>
* lambda must be postive; otherwise an
* <code>IllegalArgumentException</code> is thrown.
*
* @param lambda poisson parameter
* @return a new Poisson distribution
* @throws IllegalArgumentException if lambda &le; 0
*/
public PoissonDistribution createPoissonDistribution(double lambda) {
return new PoissonDistributionImpl(lambda);
}
}