simplified DifferentiableMultivariateVectorialFunction

the gradient and partial derivaritves can be retrieved from the jacobian
and adding them at the interface level was cumbersome for implementing
optimization problems.
Now users need to provide only the jacobian method

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@775751 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-05-17 20:19:34 +00:00
parent acd879648c
commit 4d3b3886f9
4 changed files with 0 additions and 166 deletions

View File

@ -27,46 +27,8 @@ package org.apache.commons.math.analysis;
public interface DifferentiableMultivariateVectorialFunction public interface DifferentiableMultivariateVectorialFunction
extends MultivariateVectorialFunction { extends MultivariateVectorialFunction {
/**
* Returns the partial derivative of the function with respect to point
* coordinate x<sub>j</sub>.
* <p>
* The partial derivative basically represents column j of the jacobian
* matrix. If the partial derivatives with respect to all coordinates are
* needed, it may be more efficient to use the {@link #jacobian()} method
* which will compute the complete matrix at once.
* </p>
* @param j index of the coordinate with respect to which the partial
* derivative is computed
* @return the partial derivative function with respect to point coordinate
* x<sub>i</sub>
*/
MultivariateVectorialFunction partialDerivative(int j);
/**
* Returns the gradient function of the i<sup>th</sup> component of
* the vectorial function.
*
* <p>
* The i<sup>th</sup> gradient basically represents row i of the jacobian
* matrix. If all gradients are needed, it may be more efficient to use the
* {@link #jacobian()} method which will compute the complete matrix at once.
* </p>
* @param i index of the function component for which the gradient is requested
* @return the gradient function of the i<sup>th</sup> component of
* the vectorial function
*/
MultivariateVectorialFunction gradient(int i);
/** /**
* Returns the jacobian function. * Returns the jacobian function.
* <p>
* If only one column of the jacobian is needed, it may be more efficient to
* use the {@link #partialDerivative(int)} method which will compute only the
* specified column. If only one row of the jacobian is needed, it may be more
* efficient to use the {@link #gradient(int)} method which will compute only the
* specified row.
* </p>
* @return the jacobian function * @return the jacobian function
*/ */
MultivariateMatrixFunction jacobian(); MultivariateMatrixFunction jacobian();

View File

@ -493,24 +493,6 @@ extends TestCase {
return factors.operate(variables); return factors.operate(variables);
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 1037082026387842358L;
public double[] value(double[] point) {
return factors.getColumn(i);
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -3268626996728727146L;
public double[] value(double[] point) {
return factors.getRow(i);
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = -8387467946663627585L; private static final long serialVersionUID = -8387467946663627585L;
@ -590,29 +572,6 @@ extends TestCase {
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -2884159755283203273L;
public double[] value(double[] point) {
double[][] m = jacobian(point);
double[] partial = new double[m.length];
for (int j = 0; j < partial.length; ++j) {
partial[i] = m[i][j];
}
return partial;
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -43357217231860547L;
public double[] value(double[] point) {
return jacobian(point)[i];
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = -4340046230875165095L; private static final long serialVersionUID = -4340046230875165095L;

View File

@ -533,24 +533,6 @@ public class LevenbergMarquardtOptimizerTest
return factors.operate(variables); return factors.operate(variables);
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 4868131119285501303L;
public double[] value(double[] point) {
return factors.getColumn(i);
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 6280336674474631774L;
public double[] value(double[] point) {
return factors.getRow(i);
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = 556396458721526234L; private static final long serialVersionUID = 556396458721526234L;
@ -632,29 +614,6 @@ public class LevenbergMarquardtOptimizerTest
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -2884159755283203273L;
public double[] value(double[] point) {
double[][] m = jacobian(point);
double[] partial = new double[m.length];
for (int j = 0; j < partial.length; ++j) {
partial[i] = m[i][j];
}
return partial;
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -43357217231860547L;
public double[] value(double[] point) {
return jacobian(point)[i];
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = -4340046230875165095L; private static final long serialVersionUID = -4340046230875165095L;
@ -700,29 +659,6 @@ public class LevenbergMarquardtOptimizerTest
return values; return values;
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 2371658898687841192L;
public double[] value(double[] point) {
double[][] m = jacobian(point);
double[] partial = new double[m.length];
for (int j = 0; j < partial.length; ++j) {
partial[i] = m[i][j];
}
return partial;
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 6863958501785879369L;
public double[] value(double[] point) {
return jacobian(point)[i];
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = -8673650298627399464L; private static final long serialVersionUID = -8673650298627399464L;

View File

@ -582,29 +582,6 @@ public class MinpackTest extends TestCase {
return true; return true;
} }
public MultivariateVectorialFunction partialDerivative(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = 2192585229396907068L;
public double[] value(double[] point) {
double[][] m = jacobian(point);
double[] partial = new double[m.length];
for (int j = 0; j < partial.length; ++j) {
partial[i] = m[i][j];
}
return partial;
}
};
}
public MultivariateVectorialFunction gradient(final int i) {
return new MultivariateVectorialFunction() {
private static final long serialVersionUID = -5562016064510078300L;
public double[] value(double[] point) {
return jacobian(point)[i];
}
};
}
public MultivariateMatrixFunction jacobian() { public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() { return new MultivariateMatrixFunction() {
private static final long serialVersionUID = -2435076097232923678L; private static final long serialVersionUID = -2435076097232923678L;