"HarmonicFitter" refactored to include the functionality of
"HarmonicCoefficientsGuesser" as an inner class, and now using
"HarmonicOscillator" (from package "analysis.function") instead of
"HarmonicFunction" (from package "optimization.fitting").


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1073378 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2011-02-22 16:13:56 +00:00
parent b1dcd6b612
commit 4f1dba40f5
3 changed files with 342 additions and 418 deletions

View File

@ -1,300 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.optimization.fitting;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.util.FastMath;
/** This class guesses harmonic coefficients from a sample.
* <p>The algorithm used to guess the coefficients is as follows:</p>
* <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
* &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
* </p>
*
* <p>From the analytical expression, we can compute two primitives :
* <pre>
* If2 (t) = &int; f<sup>2</sup> = a<sup>2</sup> &times; [t + S (t)] / 2
* If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
* where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
* </pre>
* </p>
*
* <p>We can remove S between these expressions :
* <pre>
* If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
* </pre>
* </p>
*
* <p>The preceding expression shows that If'2 (t) is a linear
* combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
* </p>
*
* <p>From the primitive, we can deduce the same form for definite
* integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
* <pre>
* If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
* </pre>
* </p>
*
* <p>We can find the coefficients A and B that best fit the sample
* to this linear expression by computing the definite integrals for
* each sample points.
* </p>
*
* <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
* coefficients A and B that minimize a least square criterion
* &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
* <pre>
*
* &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* A = ------------------------
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
*
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
* B = ------------------------
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
* </pre>
* </p>
*
*
* <p>In fact, we can assume both a and &omega; are positive and
* compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
* B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
* <pre>
*
* for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
* f (t<sub>i</sub>)
* f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
* x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
* y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
* end for
*
* |--------------------------
* \ | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* a = \ | ------------------------
* \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
*
*
* |--------------------------
* \ | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* &omega; = \ | ------------------------
* \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
*
* </pre>
* </p>
* <p>Once we know &omega;, we can compute:
* <pre>
* fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
* fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
* </pre>
* </p>
* <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
* <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
* expressions to compute &phi;. The best estimate over the sample is
* given by averaging these expressions.
* </p>
* <p>Since integrals and means are involved in the preceding
* estimations, these operations run in O(n) time, where n is the
* number of measurements.</p>
* @version $Revision$ $Date$
* @since 2.0
*/
public class HarmonicCoefficientsGuesser {
/** Sampled observations. */
private final WeightedObservedPoint[] observations;
/** Guessed amplitude. */
private double a;
/** Guessed pulsation &omega;. */
private double omega;
/** Guessed phase &phi;. */
private double phi;
/** Simple constructor.
* @param observations sampled observations
*/
public HarmonicCoefficientsGuesser(WeightedObservedPoint[] observations) {
this.observations = observations.clone();
a = Double.NaN;
omega = Double.NaN;
}
/** Estimate a first guess of the coefficients.
* @exception OptimizationException if the sample is too short or if
* the first guess cannot be computed (when the elements under the
* square roots are negative).
* */
public void guess() throws OptimizationException {
sortObservations();
guessAOmega();
guessPhi();
}
/** Sort the observations with respect to the abscissa.
*/
private void sortObservations() {
// Since the samples are almost always already sorted, this
// method is implemented as an insertion sort that reorders the
// elements in place. Insertion sort is very efficient in this case.
WeightedObservedPoint curr = observations[0];
for (int j = 1; j < observations.length; ++j) {
WeightedObservedPoint prec = curr;
curr = observations[j];
if (curr.getX() < prec.getX()) {
// the current element should be inserted closer to the beginning
int i = j - 1;
WeightedObservedPoint mI = observations[i];
while ((i >= 0) && (curr.getX() < mI.getX())) {
observations[i + 1] = mI;
if (i-- != 0) {
mI = observations[i];
}
}
observations[i + 1] = curr;
curr = observations[j];
}
}
}
/** Estimate a first guess of the a and &omega; coefficients.
* @exception OptimizationException if the sample is too short or if
* the first guess cannot be computed (when the elements under the
* square roots are negative).
*/
private void guessAOmega() throws OptimizationException {
// initialize the sums for the linear model between the two integrals
double sx2 = 0.0;
double sy2 = 0.0;
double sxy = 0.0;
double sxz = 0.0;
double syz = 0.0;
double currentX = observations[0].getX();
double currentY = observations[0].getY();
double f2Integral = 0;
double fPrime2Integral = 0;
final double startX = currentX;
for (int i = 1; i < observations.length; ++i) {
// one step forward
final double previousX = currentX;
final double previousY = currentY;
currentX = observations[i].getX();
currentY = observations[i].getY();
// update the integrals of f<sup>2</sup> and f'<sup>2</sup>
// considering a linear model for f (and therefore constant f')
final double dx = currentX - previousX;
final double dy = currentY - previousY;
final double f2StepIntegral =
dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
final double fPrime2StepIntegral = dy * dy / dx;
final double x = currentX - startX;
f2Integral += f2StepIntegral;
fPrime2Integral += fPrime2StepIntegral;
sx2 += x * x;
sy2 += f2Integral * f2Integral;
sxy += x * f2Integral;
sxz += x * fPrime2Integral;
syz += f2Integral * fPrime2Integral;
}
// compute the amplitude and pulsation coefficients
double c1 = sy2 * sxz - sxy * syz;
double c2 = sxy * sxz - sx2 * syz;
double c3 = sx2 * sy2 - sxy * sxy;
if ((c1 / c2 < 0.0) || (c2 / c3 < 0.0)) {
throw new OptimizationException(LocalizedFormats.UNABLE_TO_FIRST_GUESS_HARMONIC_COEFFICIENTS);
}
a = FastMath.sqrt(c1 / c2);
omega = FastMath.sqrt(c2 / c3);
}
/** Estimate a first guess of the &phi; coefficient.
*/
private void guessPhi() {
// initialize the means
double fcMean = 0.0;
double fsMean = 0.0;
double currentX = observations[0].getX();
double currentY = observations[0].getY();
for (int i = 1; i < observations.length; ++i) {
// one step forward
final double previousX = currentX;
final double previousY = currentY;
currentX = observations[i].getX();
currentY = observations[i].getY();
final double currentYPrime = (currentY - previousY) / (currentX - previousX);
double omegaX = omega * currentX;
double cosine = FastMath.cos(omegaX);
double sine = FastMath.sin(omegaX);
fcMean += omega * currentY * cosine - currentYPrime * sine;
fsMean += omega * currentY * sine + currentYPrime * cosine;
}
phi = FastMath.atan2(-fsMean, fcMean);
}
/** Get the guessed amplitude a.
* @return guessed amplitude a;
*/
public double getGuessedAmplitude() {
return a;
}
/** Get the guessed pulsation &omega;.
* @return guessed pulsation &omega;
*/
public double getGuessedPulsation() {
return omega;
}
/** Get the guessed phase &phi;.
* @return guessed phase &phi;
*/
public double getGuessedPhase() {
return phi;
}
}

View File

@ -17,113 +17,327 @@
package org.apache.commons.math.optimization.fitting;
import org.apache.commons.math.optimization.DifferentiableMultivariateVectorialOptimizer;
import org.apache.commons.math.analysis.function.HarmonicOscillator;
import org.apache.commons.math.exception.ZeroException;
import org.apache.commons.math.exception.NumberIsTooSmallException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.optimization.DifferentiableMultivariateVectorialOptimizer;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.analysis.ParametricUnivariateRealFunction;
import org.apache.commons.math.util.FastMath;
/** This class implements a curve fitting specialized for sinusoids.
* <p>Harmonic fitting is a very simple case of curve fitting. The
/**
* Class that implements a curve fitting specialized for sinusoids.
*
* Harmonic fitting is a very simple case of curve fitting. The
* estimated coefficients are the amplitude a, the pulsation &omega; and
* the phase &phi;: <code>f (t) = a cos (&omega; t + &phi;)</code>. They are
* searched by a least square estimator initialized with a rough guess
* based on integrals.</p>
* based on integrals.
*
* @version $Revision$ $Date$
* @since 2.0
*/
public class HarmonicFitter {
/** Fitter for the coefficients. */
private final CurveFitter fitter;
/** Values for amplitude, pulsation &omega; and phase &phi;. */
private double[] parameters;
/** Simple constructor.
* @param optimizer optimizer to use for the fitting
public class HarmonicFitter extends CurveFitter {
/**
* Simple constructor.
* @param optimizer Optimizer to use for the fitting.
*/
public HarmonicFitter(final DifferentiableMultivariateVectorialOptimizer optimizer) {
this.fitter = new CurveFitter(optimizer);
parameters = null;
}
/** Simple constructor.
* <p>This constructor can be used when a first guess of the
* coefficients is already known.</p>
* @param optimizer optimizer to use for the fitting
* @param initialGuess guessed values for amplitude (index 0),
* pulsation &omega; (index 1) and phase &phi; (index 2)
*/
public HarmonicFitter(final DifferentiableMultivariateVectorialOptimizer optimizer,
final double[] initialGuess) {
this.fitter = new CurveFitter(optimizer);
this.parameters = initialGuess.clone();
}
/** Add an observed weighted (x,y) point to the sample.
* @param weight weight of the observed point in the fit
* @param x abscissa of the point
* @param y observed value of the point at x, after fitting we should
* have P(x) as close as possible to this value
*/
public void addObservedPoint(double weight, double x, double y) {
fitter.addObservedPoint(weight, x, y);
super(optimizer);
}
/**
* Fit an harmonic function to the observed points.
*
* @return harmonic Function that best fits the observed points.
* @throws NumberIsTooSmallException if the sample is too short or if
* the first guess cannot be computed.
* @throws OptimizationException
* @param initialGuess First guess values in the following order:
* <ul>
* <li>Amplitude</li>
* <li>Angular frequency</li>
* <li>Phase</li>
* </ul>
* @return the parameters of the harmonic function that best fits the
* observed points (in the same order as above).
*/
public HarmonicFunction fit() throws OptimizationException {
// shall we compute the first guess of the parameters ourselves ?
if (parameters == null) {
final WeightedObservedPoint[] observations = fitter.getObservations();
public double[] fit(double[] initialGuess) {
return fit(new HarmonicOscillator.Parametric(), initialGuess);
}
/**
* Fit an harmonic function to the observed points.
* An initial guess will be automatically computed.
*
* @return the parameters of the harmonic function that best fits the
* observed points (see the other {@link #fit(double[]) fit} method.
* @throws NumberIsTooSmallException if the sample is too short for the
* the first guess to be computed.
* @throws ZeroException if the first guess cannot be computed because
* the abscissa range is zero.
*/
public double[] fit() {
return fit((new ParameterGuesser(getObservations())).guess());
}
/**
* This class guesses harmonic coefficients from a sample.
* <p>The algorithm used to guess the coefficients is as follows:</p>
*
* <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
* &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
* </p>
*
* <p>From the analytical expression, we can compute two primitives :
* <pre>
* If2 (t) = &int; f<sup>2</sup> = a<sup>2</sup> &times; [t + S (t)] / 2
* If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
* where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
* </pre>
* </p>
*
* <p>We can remove S between these expressions :
* <pre>
* If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
* </pre>
* </p>
*
* <p>The preceding expression shows that If'2 (t) is a linear
* combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
* </p>
*
* <p>From the primitive, we can deduce the same form for definite
* integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
* <pre>
* If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
* </pre>
* </p>
*
* <p>We can find the coefficients A and B that best fit the sample
* to this linear expression by computing the definite integrals for
* each sample points.
* </p>
*
* <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
* coefficients A and B that minimize a least square criterion
* &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
* <pre>
*
* &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* A = ------------------------
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
*
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
* B = ------------------------
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
* </pre>
* </p>
*
*
* <p>In fact, we can assume both a and &omega; are positive and
* compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
* B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
* <pre>
*
* for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
* f (t<sub>i</sub>)
* f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
* x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
* y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
* end for
*
* |--------------------------
* \ | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* a = \ | ------------------------
* \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
*
*
* |--------------------------
* \ | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* &omega; = \ | ------------------------
* \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
*
* </pre>
* </p>
*
* <p>Once we know &omega;, we can compute:
* <pre>
* fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
* fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
* </pre>
* </p>
*
* <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
* <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
* expressions to compute &phi;. The best estimate over the sample is
* given by averaging these expressions.
* </p>
*
* <p>Since integrals and means are involved in the preceding
* estimations, these operations run in O(n) time, where n is the
* number of measurements.</p>
*/
public static class ParameterGuesser {
/** Sampled observations. */
private final WeightedObservedPoint[] observations;
/** Amplitude. */
private double a;
/** Angular frequency. */
private double omega;
/** Phase. */
private double phi;
/**
* Simple constructor.
* @param observations sampled observations
* @throws NumberIsTooSmallException if the sample is too short or if
* the first guess cannot be computed.
*/
public ParameterGuesser(WeightedObservedPoint[] observations) {
if (observations.length < 4) {
throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
observations.length, 4, true);
}
HarmonicCoefficientsGuesser guesser = new HarmonicCoefficientsGuesser(observations);
guesser.guess();
parameters = new double[] {
guesser.getGuessedAmplitude(),
guesser.getGuessedPulsation(),
guesser.getGuessedPhase()
};
this.observations = observations.clone();
}
double[] fitted = fitter.fit(new ParametricHarmonicFunction(), parameters);
return new HarmonicFunction(fitted[0], fitted[1], fitted[2]);
/**
* Estimate a first guess of the coefficients.
*
* @return the guessed coefficients, in the following order:
* <ul>
* <li>Amplitude</li>
* <li>Angular frequency</li>
* <li>Phase</li>
* </ul>
*/
public double[] guess() {
sortObservations();
guessAOmega();
guessPhi();
return new double[] { a, omega, phi };
}
/**
* Sort the observations with respect to the abscissa.
*/
private void sortObservations() {
// Since the samples are almost always already sorted, this
// method is implemented as an insertion sort that reorders the
// elements in place. Insertion sort is very efficient in this case.
WeightedObservedPoint curr = observations[0];
for (int j = 1; j < observations.length; ++j) {
WeightedObservedPoint prec = curr;
curr = observations[j];
if (curr.getX() < prec.getX()) {
// the current element should be inserted closer to the beginning
int i = j - 1;
WeightedObservedPoint mI = observations[i];
while ((i >= 0) && (curr.getX() < mI.getX())) {
observations[i + 1] = mI;
if (i-- != 0) {
mI = observations[i];
}
}
observations[i + 1] = curr;
curr = observations[j];
}
}
}
/**
* Estimate a first guess of the amplitude and angular frequency.
* This method assumes that the {@link #sortObservations()} method
* has been called previously.
*
* @throws ZeroException if the abscissa range is zero.
*/
private void guessAOmega() {
// initialize the sums for the linear model between the two integrals
double sx2 = 0;
double sy2 = 0;
double sxy = 0;
double sxz = 0;
double syz = 0;
double currentX = observations[0].getX();
double currentY = observations[0].getY();
double f2Integral = 0;
double fPrime2Integral = 0;
final double startX = currentX;
for (int i = 1; i < observations.length; ++i) {
// one step forward
final double previousX = currentX;
final double previousY = currentY;
currentX = observations[i].getX();
currentY = observations[i].getY();
// update the integrals of f<sup>2</sup> and f'<sup>2</sup>
// considering a linear model for f (and therefore constant f')
final double dx = currentX - previousX;
final double dy = currentY - previousY;
final double f2StepIntegral =
dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
final double fPrime2StepIntegral = dy * dy / dx;
final double x = currentX - startX;
f2Integral += f2StepIntegral;
fPrime2Integral += fPrime2StepIntegral;
sx2 += x * x;
sy2 += f2Integral * f2Integral;
sxy += x * f2Integral;
sxz += x * fPrime2Integral;
syz += f2Integral * fPrime2Integral;
}
// compute the amplitude and pulsation coefficients
double c1 = sy2 * sxz - sxy * syz;
double c2 = sxy * sxz - sx2 * syz;
double c3 = sx2 * sy2 - sxy * sxy;
if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
a = 0;
// Range of the observations, assuming that the
// observations are sorted.
final double range = observations[observations.length - 1].getX() -
observations[0].getX();
if (range == 0) {
throw new ZeroException();
}
omega = 2 * Math.PI / range;
} else {
a = FastMath.sqrt(c1 / c2);
omega = FastMath.sqrt(c2 / c3);
}
}
/**
* Estimate a first guess of the phase.
*/
private void guessPhi() {
// initialize the means
double fcMean = 0;
double fsMean = 0;
double currentX = observations[0].getX();
double currentY = observations[0].getY();
for (int i = 1; i < observations.length; ++i) {
// one step forward
final double previousX = currentX;
final double previousY = currentY;
currentX = observations[i].getX();
currentY = observations[i].getY();
final double currentYPrime = (currentY - previousY) / (currentX - previousX);
double omegaX = omega * currentX;
double cosine = FastMath.cos(omegaX);
double sine = FastMath.sin(omegaX);
fcMean += omega * currentY * cosine - currentYPrime * sine;
fsMean += omega * currentY * sine + currentYPrime * cosine;
}
phi = FastMath.atan2(-fsMean, fcMean);
}
}
/** Parametric harmonic function. */
private static class ParametricHarmonicFunction implements ParametricUnivariateRealFunction {
/** {@inheritDoc} */
public double value(double x, double[] parameters) {
final double a = parameters[0];
final double omega = parameters[1];
final double phi = parameters[2];
return a * FastMath.cos(omega * x + phi);
}
/** {@inheritDoc} */
public double[] gradient(double x, double[] parameters) {
final double a = parameters[0];
final double omega = parameters[1];
final double phi = parameters[2];
final double alpha = omega * x + phi;
final double cosAlpha = FastMath.cos(alpha);
final double sinAlpha = FastMath.sin(alpha);
return new double[] { cosAlpha, -a * x * sinAlpha, -a * sinAlpha };
}
}
}

View File

@ -22,7 +22,7 @@ import static org.junit.Assert.assertTrue;
import java.util.Random;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.analysis.function.HarmonicOscillator;
import org.apache.commons.math.optimization.general.LevenbergMarquardtOptimizer;
import org.apache.commons.math.util.FastMath;
import org.apache.commons.math.util.MathUtils;
@ -31,68 +31,80 @@ import org.junit.Test;
public class HarmonicFitterTest {
@Test
public void testNoError() throws OptimizationException {
HarmonicFunction f = new HarmonicFunction(0.2, 3.4, 4.1);
public void testNoError() {
final double a = 0.2;
final double w = 3.4;
final double p = 4.1;
HarmonicOscillator f = new HarmonicOscillator(a, w, p);
HarmonicFitter fitter =
new HarmonicFitter(new LevenbergMarquardtOptimizer());
for (double x = 0.0; x < 1.3; x += 0.01) {
fitter.addObservedPoint(1.0, x, f.value(x));
fitter.addObservedPoint(1, x, f.value(x));
}
HarmonicFunction fitted = fitter.fit();
assertEquals(f.getAmplitude(), fitted.getAmplitude(), 1.0e-13);
assertEquals(f.getPulsation(), fitted.getPulsation(), 1.0e-13);
assertEquals(f.getPhase(), MathUtils.normalizeAngle(fitted.getPhase(), f.getPhase()), 1.0e-13);
final double[] fitted = fitter.fit();
assertEquals(a, fitted[0], 1.0e-13);
assertEquals(w, fitted[1], 1.0e-13);
assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1e-13);
HarmonicOscillator ff = new HarmonicOscillator(fitted[0], fitted[1], fitted[2]);
for (double x = -1.0; x < 1.0; x += 0.01) {
assertTrue(FastMath.abs(f.value(x) - fitted.value(x)) < 1.0e-13);
assertTrue(FastMath.abs(f.value(x) - ff.value(x)) < 1e-13);
}
}
@Test
public void test1PercentError() throws OptimizationException {
public void test1PercentError() {
Random randomizer = new Random(64925784252l);
HarmonicFunction f = new HarmonicFunction(0.2, 3.4, 4.1);
final double a = 0.2;
final double w = 3.4;
final double p = 4.1;
HarmonicOscillator f = new HarmonicOscillator(a, w, p);
HarmonicFitter fitter =
new HarmonicFitter(new LevenbergMarquardtOptimizer());
for (double x = 0.0; x < 10.0; x += 0.1) {
fitter.addObservedPoint(1.0, x,
fitter.addObservedPoint(1, x,
f.value(x) + 0.01 * randomizer.nextGaussian());
}
HarmonicFunction fitted = fitter.fit();
assertEquals(f.getAmplitude(), fitted.getAmplitude(), 7.6e-4);
assertEquals(f.getPulsation(), fitted.getPulsation(), 2.7e-3);
assertEquals(f.getPhase(), MathUtils.normalizeAngle(fitted.getPhase(), f.getPhase()), 1.3e-2);
final double[] fitted = fitter.fit();
assertEquals(a, fitted[0], 7.6e-4);
assertEquals(w, fitted[1], 2.7e-3);
assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.3e-2);
}
@Test
public void testInitialGuess() throws OptimizationException {
public void testInitialGuess() {
Random randomizer = new Random(45314242l);
HarmonicFunction f = new HarmonicFunction(0.2, 3.4, 4.1);
final double a = 0.2;
final double w = 3.4;
final double p = 4.1;
HarmonicOscillator f = new HarmonicOscillator(a, w, p);
HarmonicFitter fitter =
new HarmonicFitter(new LevenbergMarquardtOptimizer(), new double[] { 0.15, 3.6, 4.5 });
new HarmonicFitter(new LevenbergMarquardtOptimizer());
for (double x = 0.0; x < 10.0; x += 0.1) {
fitter.addObservedPoint(1.0, x,
fitter.addObservedPoint(1, x,
f.value(x) + 0.01 * randomizer.nextGaussian());
}
HarmonicFunction fitted = fitter.fit();
assertEquals(f.getAmplitude(), fitted.getAmplitude(), 1.2e-3);
assertEquals(f.getPulsation(), fitted.getPulsation(), 3.3e-3);
assertEquals(f.getPhase(), MathUtils.normalizeAngle(fitted.getPhase(), f.getPhase()), 1.7e-2);
final double[] fitted = fitter.fit(new double[] { 0.15, 3.6, 4.5 });
assertEquals(a, fitted[0], 1.2e-3);
assertEquals(w, fitted[1], 3.3e-3);
assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.7e-2);
}
@Test
public void testUnsorted() throws OptimizationException {
public void testUnsorted() {
Random randomizer = new Random(64925784252l);
HarmonicFunction f = new HarmonicFunction(0.2, 3.4, 4.1);
final double a = 0.2;
final double w = 3.4;
final double p = 4.1;
HarmonicOscillator f = new HarmonicOscillator(a, w, p);
HarmonicFitter fitter =
new HarmonicFitter(new LevenbergMarquardtOptimizer());
@ -120,14 +132,12 @@ public class HarmonicFitterTest {
// pass it to the fitter
for (int i = 0; i < size; ++i) {
fitter.addObservedPoint(1.0, xTab[i], yTab[i]);
fitter.addObservedPoint(1, xTab[i], yTab[i]);
}
HarmonicFunction fitted = fitter.fit();
assertEquals(f.getAmplitude(), fitted.getAmplitude(), 7.6e-4);
assertEquals(f.getPulsation(), fitted.getPulsation(), 3.5e-3);
assertEquals(f.getPhase(), MathUtils.normalizeAngle(fitted.getPhase(), f.getPhase()), 1.5e-2);
final double[] fitted = fitter.fit();
assertEquals(a, fitted[0], 7.6e-4);
assertEquals(w, fitted[1], 3.5e-3);
assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.5e-2);
}
}