Unused classes (in "src/test").

This commit is contained in:
Gilles Sadowski 2021-05-31 15:00:32 +02:00
parent 9cfd17601b
commit 53cb2cce5f
3 changed files with 0 additions and 483 deletions

View File

@ -1,159 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.stat.descriptive;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
import org.apache.commons.math4.legacy.util.FastMath;
/**
*/
public class ListUnivariateImpl extends DescriptiveStatistics implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -8837442489133392138L;
/**
* Holds a reference to a list - GENERICs are going to make
* our lives easier here as we could only accept List<Number>
*/
protected List<Double> list = new ArrayList<>();
/**
* Construct a ListUnivariate with a specific List.
* @param list The list that will back this DescriptiveStatistics
*/
public ListUnivariateImpl(List<Double> list) {
this.list = list;
}
/**
* Default constructor
*/
public ListUnivariateImpl() {
}
/** {@inheritDoc} */
@Override
public double[] getValues() {
int length = list.size();
// If the window size is not INFINITE_WINDOW AND
// the current list is larger that the window size, we need to
// take into account only the last n elements of the list
// as defined by windowSize
final int wSize = getWindowSize();
if (wSize != DescriptiveStatistics.INFINITE_WINDOW && wSize < list.size()) {
length = list.size() - FastMath.max(0, list.size() - wSize);
}
// Create an array to hold all values
double[] copiedArray = new double[length];
for (int i = 0; i < copiedArray.length; i++) {
copiedArray[i] = getElement(i);
}
return copiedArray;
}
/** {@inheritDoc} */
@Override
public double getElement(int index) {
double value = Double.NaN;
int calcIndex = index;
final int wSize = getWindowSize();
if (wSize != DescriptiveStatistics.INFINITE_WINDOW && wSize < list.size()) {
calcIndex = (list.size() - wSize) + index;
}
try {
value = list.get(calcIndex);
} catch (MathIllegalArgumentException e) {
e.printStackTrace();
}
return value;
}
/** {@inheritDoc} */
@Override
public long getN() {
int n = 0;
final int wSize = getWindowSize();
if (wSize != DescriptiveStatistics.INFINITE_WINDOW) {
if (list.size() > wSize) {
n = wSize;
} else {
n = list.size();
}
} else {
n = list.size();
}
return n;
}
/** {@inheritDoc} */
@Override
public void addValue(double v) {
list.add(v);
}
/**
* Clears all statistics.
* <p>
* <strong>N.B.: </strong> This method has the side effect of clearing the underlying list.
*/
@Override
public void clear() {
list.clear();
}
/**
* Apply the given statistic to this univariate collection.
* @param stat the statistic to apply
* @return the computed value of the statistic.
*/
@Override
public double apply(UnivariateStatistic stat) {
final double[] v = this.getValues();
if (v != null) {
return stat.evaluate(v, 0, v.length);
}
return Double.NaN;
}
/** {@inheritDoc} */
@Override
public void setWindowSize(int windowSize) {
super.setWindowSize(windowSize);
// Discard elements from the front of the list if "windowSize"
// is less than the size of the list.
final int extra = list.size() - windowSize;
if (extra > 0) {
list.subList(0, extra).clear();
}
}
}

View File

@ -1,157 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.stat.descriptive;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math4.legacy.TestUtils;
import org.apache.commons.math4.legacy.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test cases for the {@link ListUnivariateImpl} class.
*
*/
public final class ListUnivariateImplTest {
private double one = 1;
private float two = 2;
private int three = 3;
private double mean = 2;
private double sumSq = 18;
private double sum = 8;
private double var = 0.666666666666666666667;
private double std = FastMath.sqrt(var);
private double n = 4;
private double min = 1;
private double max = 3;
private double tolerance = 10E-15;
/** test stats */
@Test
public void testStats() {
List<Double> externalList = new ArrayList<>();
DescriptiveStatistics u = new ListUnivariateImpl( externalList );
Assert.assertEquals("total count",0,u.getN(),tolerance);
u.addValue(one);
u.addValue(two);
u.addValue(two);
u.addValue(three);
Assert.assertEquals("N",n,u.getN(),tolerance);
Assert.assertEquals("sum",sum,u.getSum(),tolerance);
Assert.assertEquals("sumsq",sumSq,u.getSumsq(),tolerance);
Assert.assertEquals("var",var,u.getVariance(),tolerance);
Assert.assertEquals("std",std,u.getStandardDeviation(),tolerance);
Assert.assertEquals("mean",mean,u.getMean(),tolerance);
Assert.assertEquals("min",min,u.getMin(),tolerance);
Assert.assertEquals("max",max,u.getMax(),tolerance);
u.clear();
Assert.assertEquals("total count",0,u.getN(),tolerance);
}
@Test
public void testN0andN1Conditions() {
List<Double> list = new ArrayList<>();
DescriptiveStatistics u = new ListUnivariateImpl(list);
Assert.assertTrue("Mean of n = 0 set should be NaN", Double.isNaN( u.getMean() ) );
Assert.assertTrue("Standard Deviation of n = 0 set should be NaN", Double.isNaN( u.getStandardDeviation() ) );
Assert.assertTrue("Variance of n = 0 set should be NaN", Double.isNaN(u.getVariance() ) );
list.add( Double.valueOf(one));
Assert.assertTrue( "Mean of n = 1 set should be value of single item n1", u.getMean() == one);
Assert.assertTrue( "StdDev of n = 1 set should be zero, instead it is: " + u.getStandardDeviation(), u.getStandardDeviation() == 0);
Assert.assertTrue( "Variance of n = 1 set should be zero", u.getVariance() == 0);
}
@Test
public void testSkewAndKurtosis() {
DescriptiveStatistics u = new DescriptiveStatistics();
double[] testArray = { 12.5, 12, 11.8, 14.2, 14.9, 14.5, 21, 8.2, 10.3, 11.3, 14.1,
9.9, 12.2, 12, 12.1, 11, 19.8, 11, 10, 8.8, 9, 12.3 };
for( int i = 0; i < testArray.length; i++) {
u.addValue( testArray[i]);
}
Assert.assertEquals("mean", 12.40455, u.getMean(), 0.0001);
Assert.assertEquals("variance", 10.00236, u.getVariance(), 0.0001);
Assert.assertEquals("skewness", 1.437424, u.getSkewness(), 0.0001);
Assert.assertEquals("kurtosis", 2.37719, u.getKurtosis(), 0.0001);
}
@Test
public void testProductAndGeometricMean() {
ListUnivariateImpl u = new ListUnivariateImpl(new ArrayList<>());
u.setWindowSize(10);
u.addValue( 1.0 );
u.addValue( 2.0 );
u.addValue( 3.0 );
u.addValue( 4.0 );
Assert.assertEquals( "Geometric mean not expected", 2.213364, u.getGeometricMean(), 0.00001 );
// Now test rolling - StorelessDescriptiveStatistics should discount the contribution
// of a discarded element
for( int i = 0; i < 10; i++ ) {
u.addValue( i + 2 );
}
// Values should be (2,3,4,5,6,7,8,9,10,11)
Assert.assertEquals( "Geometric mean not expected", 5.755931, u.getGeometricMean(), 0.00001 );
}
/** test stats */
@Test
public void testSerialization() {
DescriptiveStatistics u = new ListUnivariateImpl(new ArrayList<>());
Assert.assertEquals("total count",0,u.getN(),tolerance);
u.addValue(one);
u.addValue(two);
DescriptiveStatistics u2 = (DescriptiveStatistics)TestUtils.serializeAndRecover(u);
u2.addValue(two);
u2.addValue(three);
Assert.assertEquals("N",n,u2.getN(),tolerance);
Assert.assertEquals("sum",sum,u2.getSum(),tolerance);
Assert.assertEquals("sumsq",sumSq,u2.getSumsq(),tolerance);
Assert.assertEquals("var",var,u2.getVariance(),tolerance);
Assert.assertEquals("std",std,u2.getStandardDeviation(),tolerance);
Assert.assertEquals("mean",mean,u2.getMean(),tolerance);
Assert.assertEquals("min",min,u2.getMin(),tolerance);
Assert.assertEquals("max",max,u2.getMax(),tolerance);
u2.clear();
Assert.assertEquals("total count",0,u2.getN(),tolerance);
}
}

View File

@ -1,167 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.stat.descriptive;
import org.apache.commons.math4.legacy.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
/**
* Test cases for the {@link ListUnivariateImpl} class.
*/
public final class MixedListUnivariateImplTest {
private final double one = 1;
private final float two = 2;
private final int three = 3;
private final double mean = 2;
private final double sumSq = 18;
private final double sum = 8;
private final double var = 0.666666666666666666667;
private final double std = FastMath.sqrt(var);
private final double n = 4;
private final double min = 1;
private final double max = 3;
private final double tolerance = 10E-15;
public MixedListUnivariateImplTest() {
}
/** test stats */
@Test
public void testStats() {
List<Double> externalList = new ArrayList<>();
DescriptiveStatistics u = new ListUnivariateImpl(externalList);
Assert.assertEquals("total count", 0, u.getN(), tolerance);
u.addValue(one);
u.addValue(two);
u.addValue(two);
u.addValue(three);
Assert.assertEquals("N", n, u.getN(), tolerance);
Assert.assertEquals("sum", sum, u.getSum(), tolerance);
Assert.assertEquals("sumsq", sumSq, u.getSumsq(), tolerance);
Assert.assertEquals("var", var, u.getVariance(), tolerance);
Assert.assertEquals("std", std, u.getStandardDeviation(), tolerance);
Assert.assertEquals("mean", mean, u.getMean(), tolerance);
Assert.assertEquals("min", min, u.getMin(), tolerance);
Assert.assertEquals("max", max, u.getMax(), tolerance);
u.clear();
Assert.assertEquals("total count", 0, u.getN(), tolerance);
}
@Test
public void testN0andN1Conditions() {
DescriptiveStatistics u = new ListUnivariateImpl(new ArrayList<>());
Assert.assertTrue(
"Mean of n = 0 set should be NaN",
Double.isNaN(u.getMean()));
Assert.assertTrue(
"Standard Deviation of n = 0 set should be NaN",
Double.isNaN(u.getStandardDeviation()));
Assert.assertTrue(
"Variance of n = 0 set should be NaN",
Double.isNaN(u.getVariance()));
u.addValue(one);
Assert.assertTrue(
"Mean of n = 1 set should be value of single item n1, instead it is " + u.getMean() ,
u.getMean() == one);
Assert.assertTrue(
"StdDev of n = 1 set should be zero, instead it is: "
+ u.getStandardDeviation(),
u.getStandardDeviation() == 0);
Assert.assertTrue(
"Variance of n = 1 set should be zero",
u.getVariance() == 0);
}
@Test
public void testSkewAndKurtosis() {
ListUnivariateImpl u =
new ListUnivariateImpl(new ArrayList<>());
u.addValue(12.5);
u.addValue(12);
u.addValue(11.8);
u.addValue(14.2);
u.addValue(14.5);
u.addValue(14.9);
u.addValue(12.0);
u.addValue(21);
u.addValue(8.2);
u.addValue(10.3);
u.addValue(11.3);
u.addValue(14.1f);
u.addValue(9.9);
u.addValue(12.2);
u.addValue(12.1);
u.addValue(11);
u.addValue(19.8);
u.addValue(11);
u.addValue(10);
u.addValue(8.8);
u.addValue(9);
u.addValue(12.3);
Assert.assertEquals("mean", 12.40455, u.getMean(), 0.0001);
Assert.assertEquals("variance", 10.00236, u.getVariance(), 0.0001);
Assert.assertEquals("skewness", 1.437424, u.getSkewness(), 0.0001);
Assert.assertEquals("kurtosis", 2.37719, u.getKurtosis(), 0.0001);
}
@Test
public void testProductAndGeometricMean() {
ListUnivariateImpl u = new ListUnivariateImpl(new ArrayList<>());
u.setWindowSize(10);
u.addValue(1.0);
u.addValue(2.0);
u.addValue(3.0);
u.addValue(4.0);
Assert.assertEquals(
"Geometric mean not expected",
2.213364,
u.getGeometricMean(),
0.00001);
// Now test rolling - StorelessDescriptiveStatistics should discount the contribution
// of a discarded element
for (int i = 0; i < 10; i++) {
u.addValue(i + 2);
}
// Values should be (2,3,4,5,6,7,8,9,10,11)
Assert.assertEquals(
"Geometric mean not expected",
5.755931,
u.getGeometricMean(),
0.00001);
}
}