Redistribution and use in source and binary forms, with or
@@ -240,13 +239,13 @@ public class GraggBulirschStoerIntegrator extends AdaptiveStepsizeIntegrator {
*
* where err is the scaled error and k the iteration number of the
* extrapolation scheme (counting from 0). The default values are
- * 0.65 for stepControl1 and 0.94 for stepControl2.
+ * 0.65 for stepControl1 and 0.94 for stepControl2.
* The step size is subject to the restriction:
*
- * stepControl3^(1/(2k+1))/stepControl4 <= hNew/h <= 1/stepControl3^(1/(2k+1))
+ * stepControl3^(1/(2k+1))/stepControl4 <= hNew/h <= 1/stepControl3^(1/(2k+1))
*
* The default values are 0.02 for stepControl3 and 4.0 for
- * stepControl4.
+ * stepControl4.
* @param control1 first stepsize control factor (the factor is
* reset to default if lower than 0.0001 or greater than 0.9999)
* @param control2 second stepsize control factor (the factor
@@ -292,8 +291,8 @@ public class GraggBulirschStoerIntegrator extends AdaptiveStepsizeIntegrator {
* maximal order that will be used is always even, it is twice the
* maximal number of columns in the extrapolation table.
*
- * order is decreased if w(k-1) <= w(k) * orderControl1
- * order is increased if w(k) <= w(k-1) * orderControl2
+ * order is decreased if w(k-1) <= w(k) * orderControl1
+ * order is increased if w(k) <= w(k-1) * orderControl2
*
* where w is the table of work per unit step for each order
* (number of function calls divided by the step length), and k is
@@ -302,7 +301,7 @@ public class GraggBulirschStoerIntegrator extends AdaptiveStepsizeIntegrator {
* maximal number of columns is 9). The default values are 0.8 for
* orderControl1 and 0.9 for orderControl2.
* @param maximalOrder maximal order in the extrapolation table (the
- * maximal order is reset to default if order <= 6 or odd)
+ * maximal order is reset to default if order <= 6 or odd)
* @param control1 first order control factor (the factor is
* reset to default if lower than 0.0001 or greater than 0.9999)
* @param control2 second order control factor (the factor
@@ -403,7 +402,7 @@ public class GraggBulirschStoerIntegrator extends AdaptiveStepsizeIntegrator {
* @param useInterpolationErrorForControl if true, interpolation error is used
* for stepsize control
* @param mudifControlParameter interpolation order control parameter (the parameter
- * is reset to default if <= 0 or >= 7)
+ * is reset to default if <= 0 or >= 7)
*/
public void setInterpolationControl(final boolean useInterpolationErrorForControl,
final int mudifControlParameter) {
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherFieldIntegrator.java
index b3c142442..c6b2ceeb5 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherFieldIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherFieldIntegrator.java
@@ -47,7 +47,7 @@ import org.apache.commons.math4.util.MathArrays;
* |--------------------------------------------------------------------------------------------------------------------------------------------------
* | 1/20 0 16/45 0 49/180 49/180 1/20
*
- * where q = √21
+ * where q = √21
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherIntegrator.java
index 631d6b23e..315499979 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/LutherIntegrator.java
@@ -43,7 +43,7 @@ import org.apache.commons.math4.util.FastMath;
* |--------------------------------------------------------------------------------------------------------------------------------------------------
* | 1/20 0 16/45 0 49/180 49/180 1/20
*
- * where q = √21
+ * where q = √21
*
* @see EulerIntegrator
* @see ClassicalRungeKuttaIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldIntegrator.java
index 3b604e37f..06db924f4 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldIntegrator.java
@@ -35,7 +35,6 @@ import org.apache.commons.math4.util.MathArrays;
* |----------
* | 0 1
*
- *
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldStepInterpolator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldStepInterpolator.java
index f64012eab..12225291e 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldStepInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointFieldStepInterpolator.java
@@ -37,7 +37,6 @@ import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
* y(tn + θ h) = y (tn + h) + (1-θ) h [θ y'1 - (1+θ) y'2]
*
*
- *
*
* where θ belongs to [0 ; 1] and where y'1 and y'2 are the two
* evaluations of the derivatives already computed during the
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointIntegrator.java
index ff415204a..4abbebfe2 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointIntegrator.java
@@ -30,7 +30,6 @@ package org.apache.commons.math4.ode.nonstiff;
* |----------
* | 0 1
*
- *
*
* @see EulerIntegrator
* @see ClassicalRungeKuttaIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointStepInterpolator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointStepInterpolator.java
index 45014bbc5..96446b20f 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointStepInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/MidpointStepInterpolator.java
@@ -34,7 +34,6 @@ import org.apache.commons.math4.ode.sampling.StepInterpolator;
* y(tn + θ h) = y (tn + h) + (1-θ) h [θ y'1 - (1+θ) y'2]
*
*
- *
*
* where θ belongs to [0 ; 1] and where y'1 and y'2 are the two
* evaluations of the derivatives already computed during the
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaFieldIntegrator.java
index f07bbae73..dc7714e85 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaFieldIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaFieldIntegrator.java
@@ -47,7 +47,6 @@ import org.apache.commons.math4.util.MathArrays;
* |--------------------------
* | b1 b2 ... bs-1 bs
*
- *
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaIntegrator.java
index 4b8b6c358..71aff79af 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/RungeKuttaIntegrator.java
@@ -42,7 +42,6 @@ import org.apache.commons.math4.util.FastMath;
* |--------------------------
* | b1 b2 ... bs-1 bs
*
- *
*
* @see EulerIntegrator
* @see ClassicalRungeKuttaIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldIntegrator.java
index 8169d7539..979bb1e88 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldIntegrator.java
@@ -37,7 +37,6 @@ import org.apache.commons.math4.util.MathArrays;
* |--------------------
* | 1/8 3/8 3/8 1/8
*
- *
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldStepInterpolator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldStepInterpolator.java
index b41f91a55..17d41cd81 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldStepInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesFieldStepInterpolator.java
@@ -47,7 +47,6 @@ import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
* ]
*
*
- *
*
* where θ belongs to [0 ; 1] and where y'1 to y'4 are the four
* evaluations of the derivatives already computed during the
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesIntegrator.java
index cb145110c..1250686a2 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesIntegrator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesIntegrator.java
@@ -32,7 +32,6 @@ package org.apache.commons.math4.ode.nonstiff;
* |--------------------
* | 1/8 3/8 3/8 1/8
*
- *
*
* @see EulerIntegrator
* @see ClassicalRungeKuttaIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesStepInterpolator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesStepInterpolator.java
index c5a20e0bd..b94b61c81 100644
--- a/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesStepInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/ThreeEighthesStepInterpolator.java
@@ -44,7 +44,6 @@ import org.apache.commons.math4.ode.sampling.StepInterpolator;
* ]
*
*
- *
*
* where θ belongs to [0 ; 1] and where y'1 to y'4 are the four
* evaluations of the derivatives already computed during the
diff --git a/src/main/java/org/apache/commons/math4/ode/package-info.java b/src/main/java/org/apache/commons/math4/ode/package-info.java
index 106a75712..f905d77ac 100644
--- a/src/main/java/org/apache/commons/math4/ode/package-info.java
+++ b/src/main/java/org/apache/commons/math4/ode/package-info.java
@@ -127,10 +127,9 @@
* automatic guess is wrong.
*
*
- *
- *
- * Fixed Step Integrators |
- * Name | Order |
+ *
+ * Fixed Step Integrators |
+ * Name | Order |
* {@link org.apache.commons.math4.ode.nonstiff.EulerIntegrator Euler} | 1 |
* {@link org.apache.commons.math4.ode.nonstiff.MidpointIntegrator Midpoint} | 2 |
* {@link org.apache.commons.math4.ode.nonstiff.ClassicalRungeKuttaIntegrator Classical Runge-Kutta} | 4 |
@@ -138,11 +137,10 @@
* {@link org.apache.commons.math4.ode.nonstiff.ThreeEighthesIntegrator 3/8} | 4 |
* {@link org.apache.commons.math4.ode.nonstiff.LutherIntegrator Luther} | 6 |
*
- *
*
- *
- * Adaptive Stepsize Integrators |
- * Name | Integration Order | Error Estimation Order |
+ *
+ * Adaptive Stepsize Integrators |
+ * Name | Integration Order | Error Estimation Order |
* {@link org.apache.commons.math4.ode.nonstiff.HighamHall54Integrator Higham and Hall} | 5 | 4 |
* {@link org.apache.commons.math4.ode.nonstiff.DormandPrince54Integrator Dormand-Prince 5(4)} | 5 | 4 |
* {@link org.apache.commons.math4.ode.nonstiff.DormandPrince853Integrator Dormand-Prince 8(5,3)} | 8 | 5 and 3 |
@@ -150,7 +148,6 @@
* {@link org.apache.commons.math4.ode.nonstiff.AdamsBashforthIntegrator Adams-Bashforth} | variable | variable |
* {@link org.apache.commons.math4.ode.nonstiff.AdamsMoultonIntegrator Adams-Moulton} | variable | variable |
*
- *
*
*
* In the table above, the {@link org.apache.commons.math4.ode.nonstiff.AdamsBashforthIntegrator
diff --git a/src/main/java/org/apache/commons/math4/ode/sampling/FieldStepNormalizer.java b/src/main/java/org/apache/commons/math4/ode/sampling/FieldStepNormalizer.java
index bee9b1bcb..4729e177f 100644
--- a/src/main/java/org/apache/commons/math4/ode/sampling/FieldStepNormalizer.java
+++ b/src/main/java/org/apache/commons/math4/ode/sampling/FieldStepNormalizer.java
@@ -42,12 +42,11 @@ import org.apache.commons.numbers.core.Precision;
* it needs (time steps longer or shorter than the fixed time step and
* non-integer ratios are all allowed).
*
- *
- *
- * Examples (step size = 0.5) |
- * Start time | End time |
+ *
+ * Examples (step size = 0.5) |
+ * Start time | End time |
* Direction | {@link StepNormalizerMode Mode} |
- * {@link StepNormalizerBounds Bounds} | Output |
+ * {@link StepNormalizerBounds Bounds} | Output |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#NEITHER NEITHER} | 0.8, 1.3, 1.8, 2.3, 2.8 |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#FIRST FIRST} | 0.3, 0.8, 1.3, 1.8, 2.3, 2.8 |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#LAST LAST} | 0.8, 1.3, 1.8, 2.3, 2.8, 3.1 |
@@ -81,7 +80,6 @@ import org.apache.commons.numbers.core.Precision;
* 3.0 | 0.0 | backward | {@link StepNormalizerMode#MULTIPLES MULTIPLES} | {@link StepNormalizerBounds#LAST LAST} | 2.5, 2.0, 1.5, 1.0, 0.5, 0.0 |
* 3.0 | 0.0 | backward | {@link StepNormalizerMode#MULTIPLES MULTIPLES} | {@link StepNormalizerBounds#BOTH BOTH} | 3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0 |
*
- *
*
* @param the type of the field elements
* @see FieldStepHandler
diff --git a/src/main/java/org/apache/commons/math4/ode/sampling/StepNormalizer.java b/src/main/java/org/apache/commons/math4/ode/sampling/StepNormalizer.java
index edec00c92..b9b514063 100644
--- a/src/main/java/org/apache/commons/math4/ode/sampling/StepNormalizer.java
+++ b/src/main/java/org/apache/commons/math4/ode/sampling/StepNormalizer.java
@@ -40,12 +40,11 @@ import org.apache.commons.numbers.core.Precision;
* it needs (time steps longer or shorter than the fixed time step and
* non-integer ratios are all allowed).
*
- *
- *
- * Examples (step size = 0.5) |
- * Start time | End time |
+ *
+ * Examples (step size = 0.5) |
+ * Start time | End time |
* Direction | {@link StepNormalizerMode Mode} |
- * {@link StepNormalizerBounds Bounds} | Output |
+ * {@link StepNormalizerBounds Bounds} | Output |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#NEITHER NEITHER} | 0.8, 1.3, 1.8, 2.3, 2.8 |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#FIRST FIRST} | 0.3, 0.8, 1.3, 1.8, 2.3, 2.8 |
* 0.3 | 3.1 | forward | {@link StepNormalizerMode#INCREMENT INCREMENT} | {@link StepNormalizerBounds#LAST LAST} | 0.8, 1.3, 1.8, 2.3, 2.8, 3.1 |
@@ -79,7 +78,6 @@ import org.apache.commons.numbers.core.Precision;
* 3.0 | 0.0 | backward | {@link StepNormalizerMode#MULTIPLES MULTIPLES} | {@link StepNormalizerBounds#LAST LAST} | 2.5, 2.0, 1.5, 1.0, 0.5, 0.0 |
* 3.0 | 0.0 | backward | {@link StepNormalizerMode#MULTIPLES MULTIPLES} | {@link StepNormalizerBounds#BOTH BOTH} | 3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0 |
*
- *
*
* @see StepHandler
* @see FixedStepHandler
diff --git a/src/main/java/org/apache/commons/math4/optim/BaseMultiStartMultivariateOptimizer.java b/src/main/java/org/apache/commons/math4/optim/BaseMultiStartMultivariateOptimizer.java
index 4ceab3e0a..937ff50e3 100644
--- a/src/main/java/org/apache/commons/math4/optim/BaseMultiStartMultivariateOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/BaseMultiStartMultivariateOptimizer.java
@@ -23,7 +23,7 @@ import org.apache.commons.math4.random.RandomVectorGenerator;
/**
* Base class multi-start optimizer for a multivariate function.
- *
+ *
* This class wraps an optimizer in order to use it several times in
* turn with different starting points (trying to avoid being trapped
* in a local extremum when looking for a global one).
@@ -101,7 +101,7 @@ public abstract class BaseMultiStartMultivariateOptimizer
* restarts. The {@code optimize} method returns the best point only.
* This method returns all the points found at the end of each starts,
* including the best one already returned by the {@code optimize} method.
- *
+ *
* The returned array as one element for each start as specified
* in the constructor. It is ordered with the results from the
* runs that did converge first, sorted from best to worst
@@ -112,7 +112,7 @@ public abstract class BaseMultiStartMultivariateOptimizer
* an exception.
* This also means that if the first element is not {@code null}, it is
* the best point found across all starts.
- *
+ *
* The behaviour is undefined if this method is called before
* {@code optimize}; it will likely throw {@code NullPointerException}.
*
diff --git a/src/main/java/org/apache/commons/math4/optim/ConvergenceChecker.java b/src/main/java/org/apache/commons/math4/optim/ConvergenceChecker.java
index b61e419c5..c8507f5d8 100644
--- a/src/main/java/org/apache/commons/math4/optim/ConvergenceChecker.java
+++ b/src/main/java/org/apache/commons/math4/optim/ConvergenceChecker.java
@@ -20,11 +20,11 @@ package org.apache.commons.math4.optim;
/**
* This interface specifies how to check if an optimization algorithm has
* converged.
- *
+ *
* Deciding if convergence has been reached is a problem-dependent issue. The
* user should provide a class implementing this interface to allow the
* optimization algorithm to stop its search according to the problem at hand.
- *
+ *
* For convenience, three implementations that fit simple needs are already
* provided: {@link SimpleValueChecker}, {@link SimpleVectorValueChecker} and
* {@link SimplePointChecker}. The first two consider that convergence is
diff --git a/src/main/java/org/apache/commons/math4/optim/InitialGuess.java b/src/main/java/org/apache/commons/math4/optim/InitialGuess.java
index d1d8fe01e..3377013e5 100644
--- a/src/main/java/org/apache/commons/math4/optim/InitialGuess.java
+++ b/src/main/java/org/apache/commons/math4/optim/InitialGuess.java
@@ -19,7 +19,7 @@ package org.apache.commons.math4.optim;
/**
* Starting point (first guess) of the optimization procedure.
- *
+ *
* Immutable class.
*
* @since 3.1
diff --git a/src/main/java/org/apache/commons/math4/optim/SimpleBounds.java b/src/main/java/org/apache/commons/math4/optim/SimpleBounds.java
index c16634155..7922d5a56 100644
--- a/src/main/java/org/apache/commons/math4/optim/SimpleBounds.java
+++ b/src/main/java/org/apache/commons/math4/optim/SimpleBounds.java
@@ -22,7 +22,7 @@ import java.util.Arrays;
* Simple optimization constraints: lower and upper bounds.
* The valid range of the parameters is an interval that can be infinite
* (in one or both directions).
- *
+ *
* Immutable class.
*
* @since 3.1
diff --git a/src/main/java/org/apache/commons/math4/optim/SimplePointChecker.java b/src/main/java/org/apache/commons/math4/optim/SimplePointChecker.java
index e1463c9fb..6bb18001c 100644
--- a/src/main/java/org/apache/commons/math4/optim/SimplePointChecker.java
+++ b/src/main/java/org/apache/commons/math4/optim/SimplePointChecker.java
@@ -28,7 +28,7 @@ import org.apache.commons.math4.util.Pair;
* difference between each point coordinate are smaller than a threshold
* or if either the absolute difference between the point coordinates are
* smaller than another threshold.
- *
+ *
* The {@link #converged(int,Pair,Pair) converged} method will also return
* {@code true} if the number of iterations has been set (see
* {@link #SimplePointChecker(double,double,int) this constructor}).
diff --git a/src/main/java/org/apache/commons/math4/optim/SimpleValueChecker.java b/src/main/java/org/apache/commons/math4/optim/SimpleValueChecker.java
index a62c8ca80..9e1379a4c 100644
--- a/src/main/java/org/apache/commons/math4/optim/SimpleValueChecker.java
+++ b/src/main/java/org/apache/commons/math4/optim/SimpleValueChecker.java
@@ -28,7 +28,7 @@ import org.apache.commons.math4.util.FastMath;
* difference between the objective function values is smaller than a
* threshold or if either the absolute difference between the objective
* function values is smaller than another threshold.
- *
+ *
* The {@link #converged(int,PointValuePair,PointValuePair) converged}
* method will also return {@code true} if the number of iterations has been set
* (see {@link #SimpleValueChecker(double,double,int) this constructor}).
diff --git a/src/main/java/org/apache/commons/math4/optim/SimpleVectorValueChecker.java b/src/main/java/org/apache/commons/math4/optim/SimpleVectorValueChecker.java
index 460fb3810..7d31520a9 100644
--- a/src/main/java/org/apache/commons/math4/optim/SimpleVectorValueChecker.java
+++ b/src/main/java/org/apache/commons/math4/optim/SimpleVectorValueChecker.java
@@ -28,7 +28,7 @@ import org.apache.commons.math4.util.FastMath;
* difference between the objective function values is smaller than a
* threshold or if either the absolute difference between the objective
* function values is smaller than another threshold for all vectors elements.
- *
+ *
* The {@link #converged(int,PointVectorValuePair,PointVectorValuePair) converged}
* method will also return {@code true} if the number of iterations has been set
* (see {@link #SimpleVectorValueChecker(double,double,int) this constructor}).
diff --git a/src/main/java/org/apache/commons/math4/optim/linear/LinearConstraint.java b/src/main/java/org/apache/commons/math4/optim/linear/LinearConstraint.java
index 8e804e888..bd4b0b856 100644
--- a/src/main/java/org/apache/commons/math4/optim/linear/LinearConstraint.java
+++ b/src/main/java/org/apache/commons/math4/optim/linear/LinearConstraint.java
@@ -32,17 +32,16 @@ import org.apache.commons.math4.linear.RealVector;
*
* - c1x1 + ... cnxn = v
* - c1x1 + ... cnxn <= v
- * - c1x1 + ... cnxn >= v
+ * - c1x1 + ... cnxn >= v
* - l1x1 + ... lnxn + lcst =
* r1x1 + ... rnxn + rcst
* - l1x1 + ... lnxn + lcst <=
* r1x1 + ... rnxn + rcst
- * - l1x1 + ... lnxn + lcst >=
+ *
- l1x1 + ... lnxn + lcst >=
* r1x1 + ... rnxn + rcst
*
* The ci, li or ri are the coefficients of the constraints, the xi
* are the coordinates of the current point and v is the value of the constraint.
- *
*
* @since 2.0
*/
@@ -63,9 +62,9 @@ public class LinearConstraint implements Serializable {
*
* - c1x1 + ... cnxn = v
* - c1x1 + ... cnxn <= v
- * - c1x1 + ... cnxn >= v
+ * - c1x1 + ... cnxn >= v
*
- *
+ *
* @param coefficients The coefficients of the constraint (left hand side)
* @param relationship The type of (in)equality used in the constraint
* @param value The value of the constraint (right hand side)
@@ -83,9 +82,9 @@ public class LinearConstraint implements Serializable {
*
* - c1x1 + ... cnxn = v
* - c1x1 + ... cnxn <= v
- * - c1x1 + ... cnxn >= v
+ * - c1x1 + ... cnxn >= v
*
- *
+ *
* @param coefficients The coefficients of the constraint (left hand side)
* @param relationship The type of (in)equality used in the constraint
* @param value The value of the constraint (right hand side)
@@ -107,10 +106,10 @@ public class LinearConstraint implements Serializable {
* r1x1 + ... rnxn + rcst
* l1x1 + ... lnxn + lcst <=
* r1x1 + ... rnxn + rcst
- * l1x1 + ... lnxn + lcst >=
+ * l1x1 + ... lnxn + lcst >=
* r1x1 + ... rnxn + rcst
*
- *
+ *
* @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint
* @param lhsConstant The constant term of the linear expression on the left hand side of the constraint
* @param relationship The type of (in)equality used in the constraint
@@ -138,10 +137,10 @@ public class LinearConstraint implements Serializable {
* r1x1 + ... rnxn + rcst
* l1x1 + ... lnxn + lcst <=
* r1x1 + ... rnxn + rcst
- * l1x1 + ... lnxn + lcst >=
+ * l1x1 + ... lnxn + lcst >=
* r1x1 + ... rnxn + rcst
*
- *
+ *
* @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint
* @param lhsConstant The constant term of the linear expression on the left hand side of the constraint
* @param relationship The type of (in)equality used in the constraint
diff --git a/src/main/java/org/apache/commons/math4/optim/linear/LinearObjectiveFunction.java b/src/main/java/org/apache/commons/math4/optim/linear/LinearObjectiveFunction.java
index 9bf186683..8a699fd8f 100644
--- a/src/main/java/org/apache/commons/math4/optim/linear/LinearObjectiveFunction.java
+++ b/src/main/java/org/apache/commons/math4/optim/linear/LinearObjectiveFunction.java
@@ -31,12 +31,11 @@ import org.apache.commons.math4.optim.OptimizationData;
* An objective function for a linear optimization problem.
*
* A linear objective function has one the form:
- *
+ *
* c1x1 + ... cnxn + d
- *
+ *
* The ci and d are the coefficients of the equation,
* the xi are the coordinates of the current point.
- *
*
* @since 2.0
*/
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/LeastSquaresConverter.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/LeastSquaresConverter.java
index 3860cd54b..98346ea35 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/LeastSquaresConverter.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/LeastSquaresConverter.java
@@ -27,14 +27,14 @@ import org.apache.commons.math4.linear.RealMatrix;
* {@link MultivariateVectorFunction vectorial objective functions} to
* {@link MultivariateFunction scalar objective functions}
* when the goal is to minimize them.
- *
+ *
* This class is mostly used when the vectorial objective function represents
* a theoretical result computed from a point set applied to a model and
* the models point must be adjusted to fit the theoretical result to some
* reference observations. The observations may be obtained for example from
* physical measurements whether the model is built from theoretical
* considerations.
- *
+ *
* This class computes a possibly weighted squared sum of the residuals, which is
* a scalar value. The residuals are the difference between the theoretical model
* (i.e. the output of the vectorial objective function) and the observations. The
@@ -43,7 +43,7 @@ import org.apache.commons.math4.linear.RealMatrix;
* to perform a least square estimation. There are other ways to do this without using
* this converter, as some optimization algorithms directly support vectorial objective
* functions.
- *
+ *
* This class support combination of residuals with or without weights and correlations.
*
* @see MultivariateFunction
@@ -81,10 +81,10 @@ public class LeastSquaresConverter implements MultivariateFunction {
* specified weights.
*
* The scalar objective function value is computed as:
- *
+ *
* objective = ∑weighti(observationi-objectivei)2
- *
- *
+ *
+ *
*
* Weights can be used for example to combine residuals with different standard
* deviations. As an example, consider a residuals array in which even elements
@@ -124,10 +124,10 @@ public class LeastSquaresConverter implements MultivariateFunction {
* specified weights.
*
* The scalar objective function value is computed as:
- *
+ *
* objective = yTy with y = scale×(observation-objective)
- *
- *
+ *
+ *
*
* The array computed by the objective function, the observations array and the
* the scaling matrix must have consistent sizes or a {@link DimensionMismatchException}
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
index 33bb852a7..37fe24dec 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
@@ -85,11 +85,11 @@ public class MultivariateFunctionPenaltyAdapter
* function. In order for this penalty to be effective in rejecting this
* point during the optimization process, the penalty function value should
* be defined with care. This value is computed as:
- *
+ *
* penalty(point) = offset + ∑i[scale[i] * √|point[i]-boundary[i]|]
- *
+ *
* where indices i correspond to all the components that violates their boundaries.
- *
+ *
*
* So when attempting a function minimization, offset should be larger than
* the maximum expected value of the underlying function and scale components
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java
index 75dd0245e..2bd188ee3 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java
@@ -31,11 +31,11 @@ import org.apache.commons.math4.optim.nonlinear.scalar.LineSearch;
/**
* Non-linear conjugate gradient optimizer.
- *
+ *
* This class supports both the Fletcher-Reeves and the Polak-Ribière
* update formulas for the conjugate search directions.
* It also supports optional preconditioning.
- *
+ *
* Constraints are not supported: the call to
* {@link #optimize(OptimizationData[]) optimize} will throw
* {@link MathUnsupportedOperationException} if bounds are passed to it.
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/AbstractSimplex.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/AbstractSimplex.java
index 45da0369f..4ddfaede9 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/AbstractSimplex.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/AbstractSimplex.java
@@ -34,12 +34,12 @@ import org.apache.commons.math4.optim.PointValuePair;
/**
* This class implements the simplex concept.
* It is intended to be used in conjunction with {@link SimplexOptimizer}.
- *
+ *
* The initial configuration of the simplex is set by the constructors
* {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}.
* The other {@link #AbstractSimplex(int) constructor} will set all steps
* to 1, thus building a default configuration from a unit hypercube.
- *
+ *
* Users must call the {@link #build(double[]) build} method in order
* to create the data structure that will be acted on by the other methods of
* this class.
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
index 74bf89d53..4366b1528 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
@@ -35,7 +35,7 @@ import org.apache.commons.math4.util.FastMath;
* here.
* See
* this paper for an introduction.
- *
+ *
* BOBYQA is particularly well suited for high dimensional problems
* where derivatives are not available. In most cases it outperforms the
* {@link PowellOptimizer} significantly. Stochastic algorithms like
@@ -148,9 +148,9 @@ public class BOBYQAOptimizer
/**
* Differences {@link #getLowerBound()} - {@link #originShift}.
* All the components of every {@link #trustRegionCenterOffset} are going
- * to satisfy the bounds
+ * to satisfy the bounds
* {@link #getLowerBound() lowerBound}i ≤
- * {@link #trustRegionCenterOffset}i,
+ * {@link #trustRegionCenterOffset}i,
* with appropriate equalities when {@link #trustRegionCenterOffset} is
* on a constraint boundary.
* XXX "sl" in the original code.
@@ -159,9 +159,9 @@ public class BOBYQAOptimizer
/**
* Differences {@link #getUpperBound()} - {@link #originShift}
* All the components of every {@link #trustRegionCenterOffset} are going
- * to satisfy the bounds
+ * to satisfy the bounds
* {@link #trustRegionCenterOffset}i ≤
- * {@link #getUpperBound() upperBound}i,
+ * {@link #getUpperBound() upperBound}i,
* with appropriate equalities when {@link #trustRegionCenterOffset} is
* on a constraint boundary.
* XXX "su" in the original code.
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java
index e47266a9e..18af3c0c7 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java
@@ -56,16 +56,16 @@ import org.apache.commons.math4.util.MathArrays;
*
* In general, on smooth objective functions the CMA-ES is roughly ten times
* slower than BFGS (counting objective function evaluations, no gradients provided).
- * For up to variables also the derivative-free simplex
+ * For up to N=10 variables also the derivative-free simplex
* direct search method (Nelder and Mead) can be faster, but it is
* far less reliable than CMA-ES.
*
* The CMA-ES is particularly well suited for non-separable
* and/or badly conditioned problems. To observe the advantage of CMA compared
* to a conventional evolution strategy, it will usually take about
- * function evaluations. On difficult problems the complete
+ * 30 N function evaluations. On difficult problems the complete
* optimization (a single run) is expected to take roughly between
- * and
+ * 30 N and 300 N2
* function evaluations.
*
* This implementation is translated and adapted from the Matlab version
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/PowellOptimizer.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/PowellOptimizer.java
index 90d81de0e..f4d5fedca 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/PowellOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/PowellOptimizer.java
@@ -34,14 +34,14 @@ import org.apache.commons.math4.util.MathArrays;
* This code is translated and adapted from the Python version of this
* algorithm (as implemented in module {@code optimize.py} v0.5 of
* SciPy).
- *
+ *
* The default stopping criterion is based on the differences of the
* function value between two successive iterations. It is however possible
* to define a custom convergence checker that might terminate the algorithm
* earlier.
- *
+ *
* Line search is performed by the {@link LineSearch} class.
- *
+ *
* Constraints are not supported: the call to
* {@link #optimize(OptimizationData[]) optimize} will throw
* {@link MathUnsupportedOperationException} if bounds are passed to it.
@@ -77,7 +77,7 @@ public class PowellOptimizer
* This constructor allows to specify a user-defined convergence checker,
* in addition to the parameters that control the default convergence
* checking procedure.
- *
+ *
* The internal line search tolerances are set to the square-root of their
* corresponding value in the multivariate optimizer.
*
@@ -131,7 +131,7 @@ public class PowellOptimizer
/**
* The parameters control the default convergence checking procedure.
- *
+ *
* The internal line search tolerances are set to the square-root of their
* corresponding value in the multivariate optimizer.
*
diff --git a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java
index 9658944a1..54e2884e6 100644
--- a/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java
@@ -50,7 +50,7 @@ import org.apache.commons.math4.optim.nonlinear.scalar.MultivariateOptimizer;
* the objective function values at the vertices of a simplex (which is a
* set of n+1 points in dimension n) that is updated by the algorithms
* steps.
- *
+ *
*
* The simplex update procedure ({@link NelderMeadSimplex} or
* {@link MultiDirectionalSimplex}) must be passed to the
@@ -79,7 +79,7 @@ import org.apache.commons.math4.optim.nonlinear.scalar.MultivariateOptimizer;
* MultivariateFunctionMappingAdapter} or
* {@link org.apache.commons.math4.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
* MultivariateFunctionPenaltyAdapter}.
- *
+ *
* The call to {@link #optimize(OptimizationData[]) optimize} will throw
* {@link MathUnsupportedOperationException} if bounds are passed to it.
*
diff --git a/src/main/java/org/apache/commons/math4/optim/package-info.java b/src/main/java/org/apache/commons/math4/optim/package-info.java
index 8f3d99c9b..d6b63482c 100644
--- a/src/main/java/org/apache/commons/math4/optim/package-info.java
+++ b/src/main/java/org/apache/commons/math4/optim/package-info.java
@@ -23,7 +23,7 @@
* a scalar function, called the
* {@link org.apache.commons.math4.optim.nonlinear.scalar.ObjectiveFunction objective
* function}.
- *
+ *
* For some scalar objective functions the gradient can be computed (analytically
* or numerically). Algorithms that use this knowledge are defined in the
* {@link org.apache.commons.math4.optim.nonlinear.scalar.gradient} package.
diff --git a/src/main/java/org/apache/commons/math4/optim/univariate/BrentOptimizer.java b/src/main/java/org/apache/commons/math4/optim/univariate/BrentOptimizer.java
index e1b2d9dae..6cc67b86a 100644
--- a/src/main/java/org/apache/commons/math4/optim/univariate/BrentOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/univariate/BrentOptimizer.java
@@ -30,7 +30,7 @@ import org.apache.commons.numbers.core.Precision;
* It implements Richard Brent's algorithm (from his book "Algorithms for
* Minimization without Derivatives", p. 79) for finding minima of real
* univariate functions.
- *
+ *
* This code is an adaptation, partly based on the Python code from SciPy
* (module "optimize.py" v0.5); the original algorithm is also modified
*
diff --git a/src/main/java/org/apache/commons/math4/optim/univariate/MultiStartUnivariateOptimizer.java b/src/main/java/org/apache/commons/math4/optim/univariate/MultiStartUnivariateOptimizer.java
index 373a3078d..6b3e9af42 100644
--- a/src/main/java/org/apache/commons/math4/optim/univariate/MultiStartUnivariateOptimizer.java
+++ b/src/main/java/org/apache/commons/math4/optim/univariate/MultiStartUnivariateOptimizer.java
@@ -31,7 +31,7 @@ import org.apache.commons.rng.UniformRandomProvider;
/**
* Special implementation of the {@link UnivariateOptimizer} interface
* adding multi-start features to an existing optimizer.
- *
+ *
* This class wraps an optimizer in order to use it several times in
* turn with different starting points (trying to avoid being trapped
* in a local extremum when looking for a global one).
@@ -99,7 +99,7 @@ public class MultiStartUnivariateOptimizer
* restarts. The {@code optimize} method returns the best point only.
* This method returns all the points found at the end of each starts,
* including the best one already returned by the {@code optimize} method.
- *
+ *
* The returned array as one element for each start as specified
* in the constructor. It is ordered with the results from the
* runs that did converge first, sorted from best to worst
diff --git a/src/main/java/org/apache/commons/math4/optim/univariate/SearchInterval.java b/src/main/java/org/apache/commons/math4/optim/univariate/SearchInterval.java
index 172cf808b..8bed3865d 100644
--- a/src/main/java/org/apache/commons/math4/optim/univariate/SearchInterval.java
+++ b/src/main/java/org/apache/commons/math4/optim/univariate/SearchInterval.java
@@ -22,7 +22,7 @@ import org.apache.commons.math4.optim.OptimizationData;
/**
* Search interval and (optional) start value.
- *
+ *
* Immutable class.
*
* @since 3.1
diff --git a/src/main/java/org/apache/commons/math4/optim/univariate/SimpleUnivariateValueChecker.java b/src/main/java/org/apache/commons/math4/optim/univariate/SimpleUnivariateValueChecker.java
index b37a5b3b2..878dd61e4 100644
--- a/src/main/java/org/apache/commons/math4/optim/univariate/SimpleUnivariateValueChecker.java
+++ b/src/main/java/org/apache/commons/math4/optim/univariate/SimpleUnivariateValueChecker.java
@@ -29,7 +29,7 @@ import org.apache.commons.math4.util.FastMath;
* difference between the objective function values is smaller than a
* threshold or if either the absolute difference between the objective
* function values is smaller than another threshold.
- *
+ *
* The {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)
* converged} method will also return {@code true} if the number of iterations
* has been set (see {@link #SimpleUnivariateValueChecker(double,double,int)
diff --git a/src/main/java/org/apache/commons/math4/random/RngAdaptor.java b/src/main/java/org/apache/commons/math4/random/RngAdaptor.java
index 2852d58aa..7e913570b 100644
--- a/src/main/java/org/apache/commons/math4/random/RngAdaptor.java
+++ b/src/main/java/org/apache/commons/math4/random/RngAdaptor.java
@@ -63,7 +63,7 @@ import org.apache.commons.rng.core.RandomProviderDefaultState;
* new API} as it defines a "post-processing" of the output of a
* uniform RNG in order to follow a different distribution.
*
- *
+ *
*
* @since 4.0
*
diff --git a/src/main/java/org/apache/commons/math4/special/BesselJ.java b/src/main/java/org/apache/commons/math4/special/BesselJ.java
index ff821619b..b677939b5 100644
--- a/src/main/java/org/apache/commons/math4/special/BesselJ.java
+++ b/src/main/java/org/apache/commons/math4/special/BesselJ.java
@@ -50,7 +50,7 @@ import org.apache.commons.math4.util.MathArrays;
* D. J., Math. Comp. 26, 1972, pp 941-947.
* "Bessel Functions of Real Argument and Integer Order," Sookne, D. J., NBS
* Jour. of Res. B. 77B, 1973, pp 125-132.
- *
+ *
* @since 3.4
*/
public class BesselJ
@@ -176,8 +176,7 @@ public class BesselJ
* {@link #getVals()} returns the computed function values.
* {@link #getnVals()} is the number of values among those returned by {@link #getnVals()}
* that can be considered accurate.
- *
- *
+ *
* - nVals < 0: An argument is out of range. For example, nb <= 0, alpha
* < 0 or > 1, or x is too large. In this case, b(0) is set to zero, the
* remainder of the b-vector is not calculated, and nVals is set to
@@ -188,7 +187,7 @@ public class BesselJ
* precision is lost for nVals < n <= nb. If b(n) does not vanish for n >
* nVals (because it is too small to be represented), and b(n)/b(nVals) =
* \(10^{-k}\), then only the first NSIG-k significant figures of b(n) can be
- * trusted.
+ * trusted.
*/
public static class BesselJResult {
diff --git a/src/main/java/org/apache/commons/math4/special/Erf.java b/src/main/java/org/apache/commons/math4/special/Erf.java
index 987223017..c0c4ce077 100644
--- a/src/main/java/org/apache/commons/math4/special/Erf.java
+++ b/src/main/java/org/apache/commons/math4/special/Erf.java
@@ -29,10 +29,10 @@ public class Erf {
* The number {@code X_CRIT} is used by {@link #erf(double, double)} internally.
* This number solves {@code erf(x)=0.5} within 1ulp.
* More precisely, the current implementations of
- * {@link #erf(double)} and {@link #erfc(double)} satisfy:
- * {@code erf(X_CRIT) < 0.5},
- * {@code erf(Math.nextUp(X_CRIT) > 0.5},
- * {@code erfc(X_CRIT) = 0.5}, and
+ * {@link #erf(double)} and {@link #erfc(double)} satisfy:
+ * {@code erf(X_CRIT) < 0.5},
+ * {@code erf(Math.nextUp(X_CRIT) > 0.5},
+ * {@code erfc(X_CRIT) = 0.5}, and
* {@code erfc(Math.nextUp(X_CRIT) < 0.5}
*/
private static final double X_CRIT = 0.4769362762044697;
@@ -74,7 +74,7 @@ public class Erf {
* Returns the complementary error function.
*
* erfc(x) = 2/√π x∫∞ e-t2dt
- *
+ *
* = 1 - {@link #erf(double) erf(x)}
*
* This implementation computes erfc(x) using the
diff --git a/src/main/java/org/apache/commons/math4/stat/Frequency.java b/src/main/java/org/apache/commons/math4/stat/Frequency.java
index f6767200b..dfcca5ad2 100644
--- a/src/main/java/org/apache/commons/math4/stat/Frequency.java
+++ b/src/main/java/org/apache/commons/math4/stat/Frequency.java
@@ -56,7 +56,7 @@ import org.apache.commons.math4.util.MathUtils;
* Since they are not Comparable with each other the user must do any necessary coercion.
* Float.NaN and Double.NaN are not treated specially; they may occur in input and will
* occur in output if appropriate.
- *
+ *
*
* The values are ordered using the default (natural order), unless a
* Comparator is supplied in the constructor.
diff --git a/src/main/java/org/apache/commons/math4/stat/StatUtils.java b/src/main/java/org/apache/commons/math4/stat/StatUtils.java
index a6813cea9..d267bce92 100644
--- a/src/main/java/org/apache/commons/math4/stat/StatUtils.java
+++ b/src/main/java/org/apache/commons/math4/stat/StatUtils.java
@@ -520,7 +520,6 @@ public final class StatUtils {
* Double.NaN if the array is empty.
*
* Throws MathIllegalArgumentException if the array is null.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
@@ -542,7 +541,6 @@ public final class StatUtils {
*
* Throws MathIllegalArgumentException if the array is null or
* the array index parameters are not valid.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
@@ -567,7 +565,6 @@ public final class StatUtils {
* Double.NaN if the array is empty.
*
* Throws MathIllegalArgumentException if the array is null.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
@@ -589,7 +586,6 @@ public final class StatUtils {
*
* Throws MathIllegalArgumentException if the array is null or
* the array index parameters are not valid.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
@@ -612,7 +608,6 @@ public final class StatUtils {
/**
* Returns an estimate of the p th percentile of the values
* in the values array.
- *
*
* - Returns
Double.NaN if values has length
* 0
@@ -640,7 +635,6 @@ public final class StatUtils {
* in the values array, starting with the element in (0-based)
* position begin in the array and including length
* values.
- *
*
* - Returns
Double.NaN if length = 0
* - Returns (for any value of
p ) values[begin]
diff --git a/src/main/java/org/apache/commons/math4/stat/correlation/KendallsCorrelation.java b/src/main/java/org/apache/commons/math4/stat/correlation/KendallsCorrelation.java
index 32ed6d01f..1fdb155a3 100644
--- a/src/main/java/org/apache/commons/math4/stat/correlation/KendallsCorrelation.java
+++ b/src/main/java/org/apache/commons/math4/stat/correlation/KendallsCorrelation.java
@@ -27,7 +27,7 @@ import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.Pair;
/**
- * Implementation of Kendall's Tau-b rank correlation.
+ * Implementation of Kendall's Tau-b rank correlation.
*
* A pair of observations (x1, y1) and
* (x2, y2) are considered concordant if
@@ -40,9 +40,9 @@ import org.apache.commons.math4.util.Pair;
* discordant.
*
* Kendall's Tau-b is defined as:
- *
+ *
* taub = (nc - nd) / sqrt((n0 - n1) * (n0 - n2))
- *
+ *
*
* where:
*
diff --git a/src/main/java/org/apache/commons/math4/stat/correlation/PearsonsCorrelation.java b/src/main/java/org/apache/commons/math4/stat/correlation/PearsonsCorrelation.java
index 605975299..b14f8a624 100644
--- a/src/main/java/org/apache/commons/math4/stat/correlation/PearsonsCorrelation.java
+++ b/src/main/java/org/apache/commons/math4/stat/correlation/PearsonsCorrelation.java
@@ -144,11 +144,11 @@ public class PearsonsCorrelation {
/**
* Returns a matrix of standard errors associated with the estimates
- * in the correlation matrix.
+ * in the correlation matrix.
* getCorrelationStandardErrors().getEntry(i,j) is the standard
* error associated with getCorrelationMatrix.getEntry(i,j)
*
- * The formula used to compute the standard error is
+ * The formula used to compute the standard error is
* SEr = ((1 - r2) / (n - 2))1/2
* where r is the estimated correlation coefficient and
* n is the number of observations in the source dataset.
@@ -288,9 +288,9 @@ public class PearsonsCorrelation {
/**
* Derives a correlation matrix from a covariance matrix.
*
- * Uses the formula
+ * Uses the formula
* r(X,Y) = cov(X,Y)/s(X)s(Y) where
- * r(·,·) is the correlation coefficient and
+ * r(·,·) is the correlation coefficient and
* s(·) means standard deviation.
*
* @param covarianceMatrix the covariance matrix
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/DescriptiveStatistics.java b/src/main/java/org/apache/commons/math4/stat/descriptive/DescriptiveStatistics.java
index 99e02cccd..8ae7d7ac5 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/DescriptiveStatistics.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/DescriptiveStatistics.java
@@ -435,7 +435,7 @@ public class DescriptiveStatistics implements StatisticalSummary, Serializable {
* MathIllegalArgumentException is thrown)
* - at least one value must be stored (returns
Double.NaN
* otherwise)
- *
+ *
*
* @param p the requested percentile (scaled from 0 - 100)
* @return An estimate for the pth percentile of the stored data
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/MultivariateSummaryStatistics.java b/src/main/java/org/apache/commons/math4/stat/descriptive/MultivariateSummaryStatistics.java
index a161fc8eb..5248b5c01 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/MultivariateSummaryStatistics.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/MultivariateSummaryStatistics.java
@@ -453,7 +453,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setSumImpl(StorelessUnivariateStatistic[] sumImpl)
throws MathIllegalStateException, DimensionMismatchException {
@@ -480,7 +480,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setSumsqImpl(StorelessUnivariateStatistic[] sumsqImpl)
throws MathIllegalStateException, DimensionMismatchException {
@@ -507,7 +507,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setMinImpl(StorelessUnivariateStatistic[] minImpl)
throws MathIllegalStateException, DimensionMismatchException {
@@ -534,7 +534,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setMaxImpl(StorelessUnivariateStatistic[] maxImpl)
throws MathIllegalStateException, DimensionMismatchException{
@@ -561,7 +561,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setSumLogImpl(StorelessUnivariateStatistic[] sumLogImpl)
throws MathIllegalStateException, DimensionMismatchException{
@@ -588,7 +588,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setGeoMeanImpl(StorelessUnivariateStatistic[] geoMeanImpl)
throws MathIllegalStateException, DimensionMismatchException {
@@ -615,7 +615,7 @@ public class MultivariateSummaryStatistics
* @throws DimensionMismatchException if the array dimension
* does not match the one used at construction
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setMeanImpl(StorelessUnivariateStatistic[] meanImpl)
throws MathIllegalStateException, DimensionMismatchException{
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/SummaryStatistics.java b/src/main/java/org/apache/commons/math4/stat/descriptive/SummaryStatistics.java
index 91f77fb63..9ab88c174 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/SummaryStatistics.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/SummaryStatistics.java
@@ -446,7 +446,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param sumImpl the StorelessUnivariateStatistic instance to use for
* computing the Sum
- * @throws MathIllegalStateException if data has already been added (i.e if n >0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n >0)
* @since 1.2
*/
public void setSumImpl(StorelessUnivariateStatistic sumImpl)
@@ -476,7 +476,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param sumsqImpl the StorelessUnivariateStatistic instance to use for
* computing the sum of squares
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setSumsqImpl(StorelessUnivariateStatistic sumsqImpl)
@@ -506,7 +506,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param minImpl the StorelessUnivariateStatistic instance to use for
* computing the minimum
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setMinImpl(StorelessUnivariateStatistic minImpl)
@@ -536,7 +536,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param maxImpl the StorelessUnivariateStatistic instance to use for
* computing the maximum
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setMaxImpl(StorelessUnivariateStatistic maxImpl)
@@ -566,7 +566,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param sumLogImpl the StorelessUnivariateStatistic instance to use for
* computing the log sum
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setSumLogImpl(StorelessUnivariateStatistic sumLogImpl)
@@ -597,7 +597,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param geoMeanImpl the StorelessUnivariateStatistic instance to use for
* computing the geometric mean
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setGeoMeanImpl(StorelessUnivariateStatistic geoMeanImpl)
@@ -627,7 +627,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param meanImpl the StorelessUnivariateStatistic instance to use for
* computing the mean
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setMeanImpl(StorelessUnivariateStatistic meanImpl)
@@ -657,7 +657,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
*
* @param varianceImpl the StorelessUnivariateStatistic instance to use for
* computing the variance
- * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
+ * @throws MathIllegalStateException if data has already been added (i.e if n > 0)
* @since 1.2
*/
public void setVarianceImpl(StorelessUnivariateStatistic varianceImpl)
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/FirstMoment.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/FirstMoment.java
index 50b107f59..e02a7cb80 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/FirstMoment.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/FirstMoment.java
@@ -31,12 +31,11 @@ import org.apache.commons.math4.util.MathUtils;
*
* To limit numeric errors, the value of the statistic is computed using the
* following recursive updating algorithm:
- *
*
* - Initialize
m = the first value
* - For each additional value, update using
* m = m + (new value - m) / (number of observations)
- *
+ *
*
* Returns Double.NaN if the dataset is empty. Note that
* Double.NaN may also be returned if the input includes NaN and / or infinite
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/GeometricMean.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/GeometricMean.java
index 938930b52..aaeffe640 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/GeometricMean.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/GeometricMean.java
@@ -42,7 +42,7 @@ import org.apache.commons.math4.util.MathUtils;
* - If both
Double.POSITIVE_INFINITY and
* Double.NEGATIVE_INFINITY are among the values, the result is
* NaN.
- *
+ *
*
* Note that this implementation is not synchronized. If
* multiple threads access an instance of this class concurrently, and at least
@@ -162,7 +162,7 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
* @param sumLogImpl the StorelessUnivariateStatistic instance to use
* for computing the log sum
* @throws MathIllegalStateException if data has already been added
- * (i.e if n > 0)
+ * (i.e if n > 0)
*/
public void setSumLogImpl(StorelessUnivariateStatistic sumLogImpl)
throws MathIllegalStateException {
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Mean.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Mean.java
index 4a23b0eb3..250303974 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Mean.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Mean.java
@@ -199,7 +199,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
* - the weights array contains one or more NaN values
* - the weights array contains negative values
* - the start and length arguments do not determine a valid array
- *
+ *
*
* @param values the input array
* @param weights the weights array
@@ -245,7 +245,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
* the weights array contains one or more infinite values
* the weights array contains one or more NaN values
* the weights array contains negative values
- *
+ *
*
* @param values the input array
* @param weights the weights array
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SecondMoment.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SecondMoment.java
index 6cab87548..878ebe4e4 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SecondMoment.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SecondMoment.java
@@ -31,7 +31,7 @@ import org.apache.commons.math4.util.MathUtils;
* dev = (current obs - previous mean)
* n = number of observations (including current obs)
*
- * Then
+ * Then
*
* new value = old value + dev^2 * (n -1) / n.
*
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SemiVariance.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SemiVariance.java
index 2c8f840a9..b1427b872 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SemiVariance.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/SemiVariance.java
@@ -28,8 +28,8 @@ import org.apache.commons.math4.util.MathUtils;
/**
* Computes the semivariance of a set of values with respect to a given cutoff value.
* We define the downside semivariance of a set of values x
- * against the cutoff value cutoff to be
- * Σ (x[i] - target)2 / df
+ * against the cutoff value cutoff to be
+ * Σ (x[i] - target)2 / df
* where the sum is taken over all i such that x[i] < cutoff
* and df is the length of x (non-bias-corrected) or
* one less than this number (bias corrected). The upside semivariance
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Variance.java b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Variance.java
index d88f95280..7ed06bc69 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Variance.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/moment/Variance.java
@@ -52,7 +52,7 @@ import org.apache.commons.math4.util.MathUtils;
* incrementAll and then executing getResult will
* sometimes give a different, less accurate, result than executing
* evaluate with the full array of values. The former approach
- * should only be used when the full array of values is not available.
+ * should only be used when the full array of values is not available.
*
* The "population variance" ( sum((x_i - mean)^2) / n ) can also
* be computed using this statistic. The isBiasCorrected
@@ -299,7 +299,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* the weights array contains one or more NaN values
* the weights array contains negative values
* the start and length arguments do not determine a valid array
- *
+ *
*
* Does not change the internal state of the statistic.
*
@@ -335,10 +335,10 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
*
* Returns the weighted variance of the entries in the the input array.
*
- * Uses the formula
+ * Uses the formula
* Σ(weights[i]*(values[i] - weightedMean)2)/(Σ(weights[i]) - 1)
- *
- * where weightedMean is the weighted mean
+ *
+ * where weightedMean is the weighted mean
*
* This formula will not return the same result as the unweighted variance when all
* weights are equal, unless all weights are equal to 1. The formula assumes that
@@ -357,7 +357,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* the weights array contains one or more infinite values
* the weights array contains one or more NaN values
* the weights array contains negative values
- *
+ *
*
* Does not change the internal state of the statistic.
*
@@ -463,9 +463,9 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* the input array, using the precomputed weighted mean value. Returns
* Double.NaN if the designated subarray is empty.
*
- * Uses the formula
+ * Uses the formula
* Σ(weights[i]*(values[i] - mean)2)/(Σ(weights[i]) - 1)
- *
+ *
*
* The formula used assumes that the supplied mean value is the weighted arithmetic
* mean of the sample data, not a known population parameter. This method
@@ -490,7 +490,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* the weights array contains one or more NaN values
* the weights array contains negative values
* the start and length arguments do not determine a valid array
- *
+ *
*
* Does not change the internal state of the statistic.
*
@@ -541,9 +541,9 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* Returns the weighted variance of the values in the input array, using
* the precomputed weighted mean value.
*
- * Uses the formula
+ * Uses the formula
* Σ(weights[i]*(values[i] - mean)2)/(Σ(weights[i]) - 1)
- *
+ *
*
* The formula used assumes that the supplied mean value is the weighted arithmetic
* mean of the sample data, not a known population parameter. This method
@@ -567,7 +567,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* the weights array contains one or more infinite values
* the weights array contains one or more NaN values
* the weights array contains negative values
- *
+ *
*
* Does not change the internal state of the statistic.
*
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/package-info.java b/src/main/java/org/apache/commons/math4/stat/descriptive/package-info.java
index dd73f9911..37397a4e7 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/package-info.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/package-info.java
@@ -21,22 +21,22 @@
* UnivariateStatistic API Usage Examples:
*
* UnivariateStatistic:
- * /∗ evaluation approach ∗/
- * double[] values = new double[] { 1, 2, 3, 4, 5 };
- * UnivariateStatistic stat = new Mean();
- * out.println("mean = " + stat.evaluate(values));
+ * /∗ evaluation approach ∗/
+ * double[] values = new double[] { 1, 2, 3, 4, 5 };
+ * UnivariateStatistic stat = new Mean();
+ * out.println("mean = " + stat.evaluate(values));
*
*
* StorelessUnivariateStatistic:
- * /∗ incremental approach ∗/
- * double[] values = new double[] { 1, 2, 3, 4, 5 };
- * StorelessUnivariateStatistic stat = new Mean();
- * out.println("mean before adding a value is NaN = " + stat.getResult());
- * for (int i = 0; i < values.length; i++) {
- * stat.increment(values[i]);
- * out.println("current mean = " + stat2.getResult());
- * }
- * stat.clear();
+ * /∗ incremental approach ∗/
+ * double[] values = new double[] { 1, 2, 3, 4, 5 };
+ * StorelessUnivariateStatistic stat = new Mean();
+ * out.println("mean before adding a value is NaN = " + stat.getResult());
+ * for (int i = 0; i < values.length; i++) {
+ * stat.increment(values[i]);
+ * out.println("current mean = " + stat2.getResult());
+ * }
+ * stat.clear();
* out.println("mean after clear is NaN = " + stat.getResult());
*
*
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Max.java b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Max.java
index 502d2d413..1615003b5 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Max.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Max.java
@@ -26,13 +26,12 @@ import org.apache.commons.math4.util.MathUtils;
/**
* Returns the maximum of the available values.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
* - If any of the values equals
Double.POSITIVE_INFINITY ,
* the result is Double.POSITIVE_INFINITY.
- *
+ *
*
* Note that this implementation is not synchronized. If
* multiple threads access an instance of this class concurrently, and at least
@@ -112,13 +111,12 @@ public class Max extends AbstractStorelessUnivariateStatistic implements Seriali
*
* Throws MathIllegalArgumentException if the array is null or
* the array index parameters are not valid.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
* - If any of the values equals
Double.POSITIVE_INFINITY ,
* the result is Double.POSITIVE_INFINITY.
- *
+ *
*
* @param values the input array
* @param begin index of the first array element to include
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Min.java b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Min.java
index 72eaef448..479a1f761 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Min.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Min.java
@@ -26,13 +26,12 @@ import org.apache.commons.math4.util.MathUtils;
/**
* Returns the minimum of the available values.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
* - If any of the values equals
Double.NEGATIVE_INFINITY ,
* the result is Double.NEGATIVE_INFINITY.
- *
+ *
*
* Note that this implementation is not synchronized. If
* multiple threads access an instance of this class concurrently, and at least
@@ -112,13 +111,12 @@ public class Min extends AbstractStorelessUnivariateStatistic implements Seriali
*
* Throws MathIllegalArgumentException if the array is null or
* the array index parameters are not valid.
- *
*
* - The result is
NaN iff all values are NaN
* (i.e. NaN values have no impact on the value of the statistic).
* - If any of the values equals
Double.NEGATIVE_INFINITY ,
* the result is Double.NEGATIVE_INFINITY.
- *
+ *
*
* @param values the input array
* @param begin index of the first array element to include
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentile.java b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentile.java
index 7f3e54d7f..b6bdce5c4 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentile.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentile.java
@@ -41,7 +41,7 @@ import org.apache.commons.numbers.core.Precision;
/**
* A {@link StorelessUnivariateStatistic} estimating percentiles using the
- * P2
+ * P2
* Algorithm as explained by Raj
* Jain and Imrich Chlamtac in
* P2 Algorithm
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Percentile.java b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Percentile.java
index a85fb63b1..c05d78202 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Percentile.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/rank/Percentile.java
@@ -43,20 +43,20 @@ import org.apache.commons.numbers.core.Precision;
* significantly different results. The algorithm implemented here works as follows:
*
* - Let
n be the length of the (sorted) array and
- * 0 < p <= 100 be the desired percentile.
+ * 0 < p <= 100 be the desired percentile.
* - If
n = 1 return the unique array element (regardless of
* the value of p ); otherwise
* - Compute the estimated percentile position
*
pos = p * (n + 1) / 100 and the difference, d
* between pos and floor(pos) (i.e. the fractional
* part of pos ).
- * - If
pos < 1 return the smallest element in the array.
- * - Else if
pos >= n return the largest element in the array.
+ * - If
pos < 1 return the smallest element in the array.
+ * - Else if
pos >= n return the largest element in the array.
* - Else let
lower be the element in position
* floor(pos) in the array and let upper be the
* next element in the array. Return lower + d * (upper - lower)
*
- *
+ *
*
* To compute percentiles, the data must be at least partially ordered. Input
* arrays are copied and recursively partitioned using an ordering definition.
@@ -247,7 +247,6 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
*
* Calls to this method do not modify the internal quantile
* state of this statistic.
- *
*
* - Returns
Double.NaN if values has length
* 0
@@ -256,7 +255,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* - Throws
MathIllegalArgumentException if values
* is null or p is not a valid quantile value (p must be greater than 0
* and less than or equal to 100)
- *
+ *
*
* See {@link Percentile} for a description of the percentile estimation
* algorithm used.
@@ -277,14 +276,13 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* Returns an estimate of the quantile th percentile of the
* designated values in the values array. The quantile
* estimated is determined by the quantile property.
- *
*
* - Returns
Double.NaN if length = 0
* - Returns (for any value of
quantile )
* values[begin] if length = 1
* - Throws
MathIllegalArgumentException if values
* is null, or start or length is invalid
- *
+ *
*
* See {@link Percentile} for a description of the percentile estimation
* algorithm used.
@@ -310,7 +308,6 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
*
* Calls to this method do not modify the internal quantile
* state of this statistic.
- *
*
* - Returns
Double.NaN if length = 0
* - Returns (for any value of
p ) values[begin]
@@ -319,7 +316,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* is null , begin or length is invalid, or
* p is not a valid quantile value (p must be greater than 0
* and less than or equal to 100)
- *
+ *
*
* See {@link Percentile} for a description of the percentile estimation
* algorithm used.
@@ -367,7 +364,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* Sets the value of the quantile field (determines what percentile is
* computed when evaluate() is called with no quantile argument).
*
- * @param p a value between 0 < p <= 100
+ * @param p a value between 0 < p <= 100
* @throws MathIllegalArgumentException if p is not greater than 0 and less
* than or equal to 100
*/
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Product.java b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Product.java
index 5be6ce9b2..58609f883 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Product.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Product.java
@@ -144,7 +144,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
* the weights array contains one or more NaN values
* the weights array contains negative values
* the start and length arguments do not determine a valid array
- *
+ *
*
* Uses the formula,
* weighted product = ∏values[i]weights[i]
@@ -182,7 +182,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
* the weights array contains one or more infinite values
* the weights array contains one or more NaN values
* the weights array contains negative values
- *
+ *
*
* Uses the formula,
*
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Sum.java b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Sum.java
index bbe29fa8b..e112b5e0f 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Sum.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/Sum.java
@@ -143,11 +143,11 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
* the weights array contains one or more NaN values
* the weights array contains negative values
* the start and length arguments do not determine a valid array
- *
+ *
*
* Uses the formula,
* weighted sum = Σ(values[i] * weights[i])
- *
+ *
*
* @param values the input array
* @param weights the weights array
@@ -179,11 +179,11 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
* the weights array contains one or more infinite values
* the weights array contains one or more NaN values
* the weights array contains negative values
- *
+ *
*
* Uses the formula,
* weighted sum = Σ(values[i] * weights[i])
- *
+ *
*
* @param values the input array
* @param weights the weights array
diff --git a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/SumOfLogs.java b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/SumOfLogs.java
index fcb00b9b8..75e7547b1 100644
--- a/src/main/java/org/apache/commons/math4/stat/descriptive/summary/SumOfLogs.java
+++ b/src/main/java/org/apache/commons/math4/stat/descriptive/summary/SumOfLogs.java
@@ -38,7 +38,7 @@ import org.apache.commons.math4.util.MathUtils;
* If both Double.POSITIVE_INFINITY and
* Double.NEGATIVE_INFINITY are among the values, the result is
* NaN.
- *
+ *
*
* Note that this implementation is not synchronized. If
* multiple threads access an instance of this class concurrently, and at least
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/BinomialTest.java b/src/main/java/org/apache/commons/math4/stat/inference/BinomialTest.java
index d5003117c..2846c6819 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/BinomialTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/BinomialTest.java
@@ -86,7 +86,7 @@ public class BinomialTest {
* Number of successes must be ≥ 0.
* Number of successes must be ≤ number of trials.
* Probability must be ≥ 0 and ≤ 1.
- *
+ *
*
* @param numberOfTrials number of trials performed
* @param numberOfSuccesses number of successes observed
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/ChiSquareTest.java b/src/main/java/org/apache/commons/math4/stat/inference/ChiSquareTest.java
index add6c01ce..383606400 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/ChiSquareTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/ChiSquareTest.java
@@ -62,7 +62,7 @@ public class ChiSquareTest {
*
* The observed and expected arrays must have the same length and
* their common length must be at least 2.
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
* Note: This implementation rescales the
@@ -135,7 +135,7 @@ public class ChiSquareTest {
*
* The observed and expected arrays must have the same length and
* their common length must be at least 2.
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
* Note: This implementation rescales the
@@ -181,7 +181,7 @@ public class ChiSquareTest {
* The observed and expected arrays must have the same length and
* their common length must be at least 2.
* 0 < alpha < 0.5
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
* Note: This implementation rescales the
@@ -231,7 +231,7 @@ public class ChiSquareTest {
* The 2-way table represented by counts must have at
* least 2 columns and at least 2 rows.
*
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
*
@@ -295,7 +295,7 @@ public class ChiSquareTest {
* The 2-way table represented by counts must have at least 2
* columns and at least 2 rows.
*
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
*
@@ -342,7 +342,7 @@ public class ChiSquareTest {
* same length).
* The 2-way table represented by counts must have at least 2 columns and
* at least 2 rows.
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
*
@@ -378,8 +378,8 @@ public class ChiSquareTest {
*
* ∑[(K * observed1[i] - observed2[i]/K)2 / (observed1[i] + observed2[i])]
* where
- *
K = &sqrt;[&sum(observed2 / ∑(observed1)]
- *
+ *
K = √[∑(observed2 / ∑(observed1)]
+ *
* This statistic can be used to perform a Chi-Square test evaluating the
* null hypothesis that both observed counts follow the same distribution.
*
@@ -392,7 +392,7 @@ public class ChiSquareTest {
*
* The arrays observed1 and observed2 must have
* the same length and their common length must be at least 2.
- *
+ *
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
*
@@ -538,7 +538,7 @@ public class ChiSquareTest {
* The arrays observed1 and observed2 must
* have the same length and their common length must be at least 2.
*
- * 0 < alpha < 0.5
+ * 0 < alpha < 0.5
*
* If any of the preconditions are not met, an
* IllegalArgumentException is thrown.
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/GTest.java b/src/main/java/org/apache/commons/math4/stat/inference/GTest.java
index 0ee009d29..0da20436a 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/GTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/GTest.java
@@ -55,7 +55,7 @@ public class GTest {
* Expected counts must all be positive.
* Observed counts must all be ≥ 0.
* The observed and expected arrays must have the same length and their
- * common length must be at least 2.
+ * common length must be at least 2.
*
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
@@ -111,7 +111,7 @@ public class GTest {
/**
* Returns the observed significance level, or p-value,
- * associated with a G-Test for goodness of fit comparing the
+ * associated with a G-Test for goodness of fit comparing the
* {@code observed} frequency counts to those in the {@code expected} array.
*
* The number returned is the smallest significance level at which one
@@ -128,7 +128,7 @@ public class GTest {
* Observed counts must all be ≥ 0.
* The observed and expected arrays must have the
* same length and their common length must be at least 2.
- *
+ *
*
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
@@ -202,14 +202,14 @@ public class GTest {
* {@code gTest(expected, observed, 0.01)}
*
* Returns true iff {@link #gTest(double[], long[])
- * gTestGoodnessOfFitPValue(expected, observed)} < alpha
+ * gTestGoodnessOfFitPValue(expected, observed)} < alpha
*
* Preconditions:
* - Expected counts must all be positive.
* - Observed counts must all be ≥ 0.
* - The observed and expected arrays must have the same length and their
* common length must be at least 2.
- *
- {@code 0 < alpha < 0.5}
+ * {@code 0 < alpha < 0.5}
*
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
@@ -279,8 +279,8 @@ public class GTest {
/**
* Calculates the
* Shannon entropy for a vector. The values of {@code k} are taken to be
- * incidence counts of the values of a random variable. What is returned is
- * ∑pilog(pi
+ * incidence counts of the values of a random variable. What is returned is
+ * ∑pilog(pi
* where pi = k[i] / (sum of elements in k)
*
* @param k Vector (for ex. Row Sums of a trials)
@@ -314,8 +314,8 @@ public class GTest {
* where {@code H} is the
*
* Shannon Entropy of the random variable formed by viewing the elements
- * of the argument array as incidence counts;
- * {@code k} is a matrix with rows {@code [observed1, observed2]};
+ * of the argument array as incidence counts;
+ * {@code k} is a matrix with rows {@code [observed1, observed2]};
* {@code rowSums, colSums} are the row/col sums of {@code k};
* and {@code totalSum} is the overall sum of all entries in {@code k}.
*
@@ -327,7 +327,7 @@ public class GTest {
* Observed counts for a specific bin must not both be zero.
* Observed counts for a specific sample must not all be 0.
* The arrays {@code observed1} and {@code observed2} must have
- * the same length and their common length must be at least 2.
+ * the same length and their common length must be at least 2.
*
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
@@ -398,7 +398,7 @@ public class GTest {
*
* {@code (sgn) sqrt(gValueDataSetsComparison({k11, k12}, {k21, k22})}
*
- * where {@code sgn} is -1 if {@code k11 / (k11 + k12) < k21 / (k21 + k22))};
+ * where {@code sgn} is -1 if {@code k11 / (k11 + k12) < k21 / (k21 + k22))};
* 1 otherwise.
*
* Signed root LLR has two advantages over the basic LLR: a) it is positive
@@ -450,7 +450,7 @@ public class GTest {
* Observed counts for a specific sample must not all be 0.
* The arrays {@code observed1} and {@code observed2} must
* have the same length and their common length must be at least 2.
- *
+ *
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
*
@@ -500,7 +500,7 @@ public class GTest {
* Observed counts for a specific sample must not all be 0.
* The arrays {@code observed1} and {@code observed2} must
* have the same length and their common length must be at least 2.
- * {@code 0 < alpha < 0.5}
+ * {@code 0 < alpha < 0.5}
*
* If any of the preconditions are not met, a
* {@code MathIllegalArgumentException} is thrown.
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/InferenceTestUtils.java b/src/main/java/org/apache/commons/math4/stat/inference/InferenceTestUtils.java
index a0da22f7c..a06e3d165 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/InferenceTestUtils.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/InferenceTestUtils.java
@@ -65,6 +65,9 @@ public class InferenceTestUtils {
// CHECKSTYLE: stop JavadocMethodCheck
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#homoscedasticT(double[], double[])
*/
public static double homoscedasticT(final double[] sample1, final double[] sample2)
@@ -73,6 +76,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sampleStats1 StatisticalSummary describing data from the first sample
+ * @param sampleStats2 StatisticalSummary describing data from the second sample
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#homoscedasticT(org.apache.commons.math4.stat.descriptive.StatisticalSummary, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double homoscedasticT(final StatisticalSummary sampleStats1,
@@ -82,6 +88,11 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @param alpha significance level of the test
+ * @return true if the null hypothesis can be rejected with
+ * confidence 1 - alpha
* @see org.apache.commons.math4.stat.inference.TTest#homoscedasticTTest(double[], double[], double)
*/
public static boolean homoscedasticTTest(final double[] sample1, final double[] sample2,
@@ -92,6 +103,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return p-value for t-test
* @see org.apache.commons.math4.stat.inference.TTest#homoscedasticTTest(double[], double[])
*/
public static double homoscedasticTTest(final double[] sample1, final double[] sample2)
@@ -100,6 +114,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sampleStats1 StatisticalSummary describing data from the first sample
+ * @param sampleStats2 StatisticalSummary describing data from the second sample
+ * @return p-value for t-test
* @see org.apache.commons.math4.stat.inference.TTest#homoscedasticTTest(org.apache.commons.math4.stat.descriptive.StatisticalSummary, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double homoscedasticTTest(final StatisticalSummary sampleStats1,
@@ -109,6 +126,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#pairedT(double[], double[])
*/
public static double pairedT(final double[] sample1, final double[] sample2)
@@ -118,6 +138,11 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @param alpha significance level of the test
+ * @return true if the null hypothesis can be rejected with
+ * confidence 1 - alpha
* @see org.apache.commons.math4.stat.inference.TTest#pairedTTest(double[], double[], double)
*/
public static boolean pairedTTest(final double[] sample1, final double[] sample2,
@@ -128,6 +153,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return p-value for t-test
* @see org.apache.commons.math4.stat.inference.TTest#pairedTTest(double[], double[])
*/
public static double pairedTTest(final double[] sample1, final double[] sample2)
@@ -137,6 +165,9 @@ public class InferenceTestUtils {
}
/**
+ * @param mu comparison constant
+ * @param observed array of values
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#t(double, double[])
*/
public static double t(final double mu, final double[] observed)
@@ -145,6 +176,9 @@ public class InferenceTestUtils {
}
/**
+ * @param mu comparison constant
+ * @param sampleStats DescriptiveStatistics holding sample summary statitstics
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#t(double, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double t(final double mu, final StatisticalSummary sampleStats)
@@ -153,6 +187,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#t(double[], double[])
*/
public static double t(final double[] sample1, final double[] sample2)
@@ -161,6 +198,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sampleStats1 StatisticalSummary describing data from the first sample
+ * @param sampleStats2 StatisticalSummary describing data from the second sample
+ * @return t statistic
* @see org.apache.commons.math4.stat.inference.TTest#t(org.apache.commons.math4.stat.descriptive.StatisticalSummary, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double t(final StatisticalSummary sampleStats1,
@@ -170,6 +210,10 @@ public class InferenceTestUtils {
}
/**
+ * @param mu constant value to compare sample mean against
+ * @param sample array of sample data values
+ * @param alpha significance level of the test
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double, double[], double)
*/
public static boolean tTest(final double mu, final double[] sample, final double alpha)
@@ -179,6 +223,9 @@ public class InferenceTestUtils {
}
/**
+ * @param mu constant value to compare sample mean against
+ * @param sample array of sample data values
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double, double[])
*/
public static double tTest(final double mu, final double[] sample)
@@ -188,6 +235,10 @@ public class InferenceTestUtils {
}
/**
+ * @param mu constant value to compare sample mean against
+ * @param sampleStats StatisticalSummary describing sample data values
+ * @param alpha significance level of the test
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double, org.apache.commons.math4.stat.descriptive.StatisticalSummary, double)
*/
public static boolean tTest(final double mu, final StatisticalSummary sampleStats,
@@ -198,6 +249,9 @@ public class InferenceTestUtils {
}
/**
+ * @param mu constant value to compare sample mean against
+ * @param sampleStats StatisticalSummary describing sample data
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double tTest(final double mu, final StatisticalSummary sampleStats)
@@ -207,6 +261,11 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @param alpha significance level of the test
+ * @return true if the null hypothesis can be rejected with
+ * confidence 1 - alpha
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double[], double[], double)
*/
public static boolean tTest(final double[] sample1, final double[] sample2,
@@ -217,6 +276,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sample1 array of sample data values
+ * @param sample2 array of sample data values
+ * @return p-value for t-test
* @see org.apache.commons.math4.stat.inference.TTest#tTest(double[], double[])
*/
public static double tTest(final double[] sample1, final double[] sample2)
@@ -226,6 +288,11 @@ public class InferenceTestUtils {
}
/**
+ * @param sampleStats1 StatisticalSummary describing sample data values
+ * @param sampleStats2 StatisticalSummary describing sample data values
+ * @param alpha significance level of the test
+ * @return true if the null hypothesis can be rejected with
+ * confidence 1 - alpha
* @see org.apache.commons.math4.stat.inference.TTest#tTest(org.apache.commons.math4.stat.descriptive.StatisticalSummary, org.apache.commons.math4.stat.descriptive.StatisticalSummary, double)
*/
public static boolean tTest(final StatisticalSummary sampleStats1,
@@ -237,6 +304,9 @@ public class InferenceTestUtils {
}
/**
+ * @param sampleStats1 StatisticalSummary describing data from the first sample
+ * @param sampleStats2 StatisticalSummary describing data from the second sample
+ * @return p-value for t-test
* @see org.apache.commons.math4.stat.inference.TTest#tTest(org.apache.commons.math4.stat.descriptive.StatisticalSummary, org.apache.commons.math4.stat.descriptive.StatisticalSummary)
*/
public static double tTest(final StatisticalSummary sampleStats1,
@@ -247,7 +317,10 @@ public class InferenceTestUtils {
}
/**
- * @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquare(double[], long[])
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @return chiSquare test statistic
+* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquare(double[], long[])
*/
public static double chiSquare(final double[] expected, final long[] observed)
throws NotPositiveException, NotStrictlyPositiveException,
@@ -256,6 +329,8 @@ public class InferenceTestUtils {
}
/**
+ * @param counts array representation of 2-way table
+ * @return chiSquare test statistic
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquare(long[][])
*/
public static double chiSquare(final long[][] counts)
@@ -265,6 +340,11 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @param alpha significance level of the test
+ * @return true iff null hypothesis can be rejected with confidence
+ * 1 - alpha
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTest(double[], long[], double)
*/
public static boolean chiSquareTest(final double[] expected, final long[] observed,
@@ -275,6 +355,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTest(double[], long[])
*/
public static double chiSquareTest(final double[] expected, final long[] observed)
@@ -284,6 +367,10 @@ public class InferenceTestUtils {
}
/**
+ * @param counts array representation of 2-way table
+ * @param alpha significance level of the test
+ * @return true iff null hypothesis can be rejected with confidence
+ * 1 - alpha
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTest(long[][], double)
*/
public static boolean chiSquareTest(final long[][] counts, final double alpha)
@@ -293,6 +380,8 @@ public class InferenceTestUtils {
}
/**
+ * @param counts array representation of 2-way table
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTest(long[][])
*/
public static double chiSquareTest(final long[][] counts)
@@ -302,6 +391,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data set
+ * @return chiSquare test statistic
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareDataSetsComparison(long[], long[])
*
* @since 1.2
@@ -313,6 +405,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data set
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTestDataSetsComparison(long[], long[])
*
* @since 1.2
@@ -325,6 +420,11 @@ public class InferenceTestUtils {
}
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data set
+ * @param alpha significance level of the test
+ * @return true iff null hypothesis can be rejected with confidence
+ * 1 - alpha
* @see org.apache.commons.math4.stat.inference.ChiSquareTest#chiSquareTestDataSetsComparison(long[], long[], double)
*
* @since 1.2
@@ -338,6 +438,9 @@ public class InferenceTestUtils {
}
/**
+ * @param categoryData Collection of double[]
+ * arrays each containing data for one category
+ * @return Fvalue
* @see org.apache.commons.math4.stat.inference.OneWayAnova#anovaFValue(Collection)
*
* @since 1.2
@@ -348,6 +451,9 @@ public class InferenceTestUtils {
}
/**
+ * @param categoryData Collection of double[]
+ * arrays each containing data for one category
+ * @return Pvalue
* @see org.apache.commons.math4.stat.inference.OneWayAnova#anovaPValue(Collection)
*
* @since 1.2
@@ -359,6 +465,11 @@ public class InferenceTestUtils {
}
/**
+ * @param categoryData Collection of double[]
+ * arrays each containing data for one category
+ * @param alpha significance level of the test
+ * @return true if the null hypothesis can be rejected with
+ * confidence 1 - alpha
* @see org.apache.commons.math4.stat.inference.OneWayAnova#anovaTest(Collection,double)
*
* @since 1.2
@@ -371,6 +482,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @return G-Test statistic
* @see org.apache.commons.math4.stat.inference.GTest#g(double[], long[])
* @since 3.1
*/
@@ -381,6 +495,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.GTest#gTest( double[], long[] )
* @since 3.1
*/
@@ -391,6 +508,9 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.GTest#gTestIntrinsic(double[], long[] )
* @since 3.1
*/
@@ -401,6 +521,11 @@ public class InferenceTestUtils {
}
/**
+ * @param observed array of observed frequency counts
+ * @param expected array of expected frequency counts
+ * @param alpha significance level of the test
+ * @return true iff null hypothesis can be rejected with confidence 1 -
+ * alpha
* @see org.apache.commons.math4.stat.inference.GTest#gTest( double[],long[],double)
* @since 3.1
*/
@@ -412,6 +537,10 @@ public class InferenceTestUtils {
}
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data
+ * set
+ * @return G-Test statistic
* @see org.apache.commons.math4.stat.inference.GTest#gDataSetsComparison(long[], long[])
* @since 3.1
*/
@@ -422,6 +551,14 @@ public class InferenceTestUtils {
}
/**
+ * @param k11 number of times the two events occurred together (AB)
+ * @param k12 number of times the second event occurred WITHOUT the
+ * first event (notA,B)
+ * @param k21 number of times the first event occurred WITHOUT the
+ * second event (A, notB)
+ * @param k22 number of times something else occurred (i.e. was neither
+ * of these events (notA, notB)
+ * @return root log-likelihood ratio
* @see org.apache.commons.math4.stat.inference.GTest#rootLogLikelihoodRatio(long, long, long, long)
* @since 3.1
*/
@@ -432,6 +569,10 @@ public class InferenceTestUtils {
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data
+ * set
+ * @return p-value
* @see org.apache.commons.math4.stat.inference.GTest#gTestDataSetsComparison(long[], long[])
* @since 3.1
*/
@@ -443,6 +584,12 @@ public class InferenceTestUtils {
}
/**
+ * @param observed1 array of observed frequency counts of the first data set
+ * @param observed2 array of observed frequency counts of the second data
+ * set
+ * @param alpha significance level of the test
+ * @return true iff null hypothesis can be rejected with confidence 1 -
+ * alpha
* @see org.apache.commons.math4.stat.inference.GTest#gTestDataSetsComparison(long[],long[],double)
* @since 3.1
*/
@@ -455,6 +602,9 @@ public class InferenceTestUtils {
}
/**
+ * @param dist reference distribution
+ * @param data sample being evaluated
+ * @return Kolmogorov-Smirnov statistic \(D_n\)
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovStatistic(RealDistribution, double[])
* @since 3.3
*/
@@ -464,6 +614,10 @@ public class InferenceTestUtils {
}
/**
+ * @param dist reference distribution
+ * @param data sample being being evaluated
+ * @return the p-value associated with the null hypothesis that {@code data} is a sample from
+ * {@code distribution}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovTest(RealDistribution, double[])
* @since 3.3
*/
@@ -473,6 +627,11 @@ public class InferenceTestUtils {
}
/**
+ * @param dist reference distribution
+ * @param data sample being being evaluated
+ * @param strict whether or not to force exact computation of the p-value
+ * @return the p-value associated with the null hypothesis that {@code data} is a sample from
+ * {@code distribution}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovTest(RealDistribution, double[], boolean)
* @since 3.3
*/
@@ -482,6 +641,11 @@ public class InferenceTestUtils {
}
/**
+ * @param dist reference distribution
+ * @param data sample being being evaluated
+ * @param alpha significance level of the test
+ * @return true iff the null hypothesis that {@code data} is a sample from {@code distribution}
+ * can be rejected with confidence 1 - {@code alpha}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovTest(RealDistribution, double[], double)
* @since 3.3
*/
@@ -491,6 +655,10 @@ public class InferenceTestUtils {
}
/**
+ * @param x first sample
+ * @param y second sample
+ * @return test statistic \(D_{n,m}\) used to evaluate the null hypothesis that {@code x} and
+ * {@code y} represent samples from the same underlying distribution
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovStatistic(double[], double[])
* @since 3.3
*/
@@ -500,6 +668,10 @@ public class InferenceTestUtils {
}
/**
+ * @param x first sample dataset
+ * @param y second sample dataset
+ * @return p-value associated with the null hypothesis that {@code x} and {@code y} represent
+ * samples from the same distribution
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovTest(double[], double[])
* @since 3.3
*/
@@ -509,6 +681,12 @@ public class InferenceTestUtils {
}
/**
+ * @param x first sample dataset.
+ * @param y second sample dataset.
+ * @param strict whether or not the probability to compute is expressed as
+ * a strict inequality (ignored for large samples).
+ * @return p-value associated with the null hypothesis that {@code x} and
+ * {@code y} represent samples from the same distribution.
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#kolmogorovSmirnovTest(double[], double[], boolean)
* @since 3.3
*/
@@ -518,6 +696,12 @@ public class InferenceTestUtils {
}
/**
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @param strict whether or not the probability to compute is expressed as a strict inequality
+ * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
+ * greater than (resp. greater than or equal to) {@code d}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#exactP(double, int, int, boolean)
* @since 3.3
*/
@@ -526,6 +710,11 @@ public class InferenceTestUtils {
}
/**
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @return approximate probability that a randomly selected m-n partition of m + n generates
+ * \(D_{n,m}\) greater than {@code d}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#approximateP(double, int, int)
* @since 3.3
*/
@@ -534,6 +723,13 @@ public class InferenceTestUtils {
}
/**
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @param iterations number of random partitions to generate
+ * @param strict whether or not the probability to compute is expressed as a strict inequality
+ * @return proportion of randomly generated m-n partitions of m + n that result in \(D_{n,m}\)
+ * greater than (resp. greater than or equal to) {@code d}
* @see org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest#monteCarloP(double, int, int, boolean, int)
* @since 3.3
*/
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTest.java b/src/main/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTest.java
index c79e64433..53a616288 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTest.java
@@ -73,7 +73,7 @@ import org.apache.commons.math4.util.MathUtils;
* When the product of the sample sizes exceeds {@value #LARGE_SAMPLE_PRODUCT}, the asymptotic
* distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)} for details on
* the approximation.
- *
+ *
* If the product of the sample sizes is less than {@value #LARGE_SAMPLE_PRODUCT} and the sample
* data contains ties, random jitter is added to the sample data to break ties before applying
* the algorithm above. Alternatively, the {@link #bootstrap(double[], double[], int, boolean)}
@@ -82,7 +82,7 @@ import org.apache.commons.math4.util.MathUtils;
*
*
* In the two-sample case, \(D_{n,m}\) has a discrete distribution. This makes the p-value
- * associated with the null hypothesis \(H_0 : D_{n,m} \ge d \) differ from \(H_0 : D_{n,m} > d \)
+ * associated with the null hypothesis \(H_0 : D_{n,m} \ge d \) differ from \(H_0 : D_{n,m} \ge d \)
* by the mass of the observed value \(d\). To distinguish these, the two-sample tests use a boolean
* {@code strict} parameter. This parameter is ignored for large samples.
*
@@ -95,7 +95,6 @@ import org.apache.commons.math4.util.MathUtils;
* expressed using strict or non-strict inequality. See
* {@link #kolmogorovSmirnovTest(double[], double[], boolean)}.
*
- *
*
* References:
*
@@ -109,10 +108,9 @@ import org.apache.commons.math4.util.MathUtils;
* - [4] Wilcox, Rand. 2012. Introduction to Robust Estimation and Hypothesis Testing,
* Chapter 5, 3rd Ed. Academic Press.
*
- *
+ *
* Note that [1] contains an error in computing h, refer to MATH-437 for details.
- *
*
* @since 3.3
*/
@@ -234,7 +232,7 @@ public class KolmogorovSmirnovTest {
* asymptotic distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)}
* for details on the approximation.
*
- * If {@code x.length * y.length} < {@value #LARGE_SAMPLE_PRODUCT} and the combined set of values in
+ * If {@code x.length * y.length <} {@value #LARGE_SAMPLE_PRODUCT} and the combined set of values in
* {@code x} and {@code y} contains ties, random jitter is added to {@code x} and {@code y} to
* break ties before computing \(D_{n,m}\) and the p-value. The jitter is uniformly distributed
* on (-minDelta / 2, minDelta / 2) where minDelta is the smallest pairwise difference between
@@ -457,17 +455,17 @@ public class KolmogorovSmirnovTest {
}
/**
- * Calculates \(P(D_n < d)\) using the method described in [1] with quick decisions for extreme
+ * Calculates \(P(D_n < d)\) using the method described in [1] with quick decisions for extreme
* values given in [2] (see above). The result is not exact as with
* {@link #cdfExact(double, int)} because calculations are based on
* {@code double} rather than {@link org.apache.commons.math4.fraction.BigFraction}.
*
* @param d statistic
* @param n sample size
- * @return \(P(D_n < d)\)
+ * @return \(P(D_n < d)\)
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
- * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
*/
public double cdf(double d, int n)
throws MathArithmeticException {
@@ -483,10 +481,10 @@ public class KolmogorovSmirnovTest {
*
* @param d statistic
* @param n sample size
- * @return \(P(D_n < d)\)
+ * @return \(P(D_n < d)\)
* @throws MathArithmeticException if the algorithm fails to convert {@code h} to a
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
- * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
*/
public double cdfExact(double d, int n)
throws MathArithmeticException {
@@ -504,10 +502,10 @@ public class KolmogorovSmirnovTest {
* very slow execution time, or if {@code double} should be used convenient places to
* gain speed. Almost never choose {@code true} in real applications unless you are very
* sure; {@code true} is almost solely for verification purposes.
- * @return \(P(D_n < d)\)
+ * @return \(P(D_n < d)\)
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
- * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
*/
public double cdf(double d, int n, boolean exact)
throws MathArithmeticException {
@@ -546,10 +544,10 @@ public class KolmogorovSmirnovTest {
*
* @param d statistic
* @param n sample size
- * @return the two-sided probability of \(P(D_n < d)\)
+ * @return the two-sided probability of \(P(D_n < d)\)
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
- * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
*/
private double exactK(double d, int n)
throws MathArithmeticException {
@@ -578,7 +576,7 @@ public class KolmogorovSmirnovTest {
*
* @param d statistic
* @param n sample size
- * @return \(P(D_n < d)\)
+ * @return \(P(D_n < d)\)
*/
private double roundedK(double d, int n) {
@@ -595,11 +593,11 @@ public class KolmogorovSmirnovTest {
}
/**
- * Computes the Pelz-Good approximation for \(P(D_n < d)\) as described in [2] in the class javadoc.
+ * Computes the Pelz-Good approximation for \(P(D_n < d)\) as described in [2] in the class javadoc.
*
* @param d value of d-statistic (x in [2])
* @param n sample size
- * @return \(P(D_n < d)\)
+ * @return \(P(D_n < d)\)
* @since 3.4
*/
public double pelzGood(double d, int n) {
@@ -986,7 +984,7 @@ public class KolmogorovSmirnovTest {
}
/**
- * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge
+ * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge
* d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic. See
* {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
*
@@ -1007,7 +1005,7 @@ public class KolmogorovSmirnovTest {
}
/**
- * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\)
+ * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\)
* is the 2-sample Kolmogorov-Smirnov statistic. See
* {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
*
@@ -1052,7 +1050,7 @@ public class KolmogorovSmirnovTest {
}
/**
- * Uses Monte Carlo simulation to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) is the
+ * Uses Monte Carlo simulation to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) is the
* 2-sample Kolmogorov-Smirnov statistic. See
* {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
*
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/MannWhitneyUTest.java b/src/main/java/org/apache/commons/math4/stat/inference/MannWhitneyUTest.java
index 44528163c..f938c1759 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/MannWhitneyUTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/MannWhitneyUTest.java
@@ -114,7 +114,6 @@ public class MannWhitneyUTest {
* All observations in the two samples are independent.
* The observations are at least ordinal (continuous are also ordinal).
*
- *
*
* @param x the first sample
* @param y the second sample
@@ -203,8 +202,7 @@ public class MannWhitneyUTest {
*
* - All observations in the two samples are independent.
* - The observations are at least ordinal (continuous are also ordinal).
- *
- *
+ *
* Ties give rise to biased variance at the moment. See e.g. http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf.
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/OneWayAnova.java b/src/main/java/org/apache/commons/math4/stat/inference/OneWayAnova.java
index 3c322c9fd..e54daf17c 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/OneWayAnova.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/OneWayAnova.java
@@ -66,7 +66,7 @@ public class OneWayAnova {
* double[] arrays.
* There must be at least two double[] arrays in the
* categoryData collection and each of these arrays must
- * contain at least two values.
+ * contain at least two values.
* This implementation computes the F statistic using the definitional
* formula
* F = msbg/mswg
@@ -74,7 +74,7 @@ public class OneWayAnova {
* msbg = between group mean square
* mswg = within group mean square
* are as defined
- * here
+ * here
*
* @param categoryData Collection of double[]
* arrays each containing data for one category
@@ -101,14 +101,14 @@ public class OneWayAnova {
* double[] arrays.
* There must be at least two double[] arrays in the
* categoryData collection and each of these arrays must
- * contain at least two values.
+ * contain at least two values.
* This implementation uses the
* {@link org.apache.commons.math4.distribution.FDistribution
* commons-math F Distribution implementation} to estimate the exact
* p-value, using the formula
* p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability
- * is the commons-math implementation of the F distribution.
+ * is the commons-math implementation of the F distribution.
*
* @param categoryData Collection of double[]
* arrays each containing data for one category
@@ -140,14 +140,14 @@ public class OneWayAnova {
* {@link SummaryStatistics}.
* There must be at least two {@link SummaryStatistics} in the
* categoryData collection and each of these statistics must
- * contain at least two values.
+ * contain at least two values.
* This implementation uses the
* {@link org.apache.commons.math4.distribution.FDistribution
* commons-math F Distribution implementation} to estimate the exact
* p-value, using the formula
* p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability
- * is the commons-math implementation of the F distribution.
+ * is the commons-math implementation of the F distribution.
*
* @param categoryData Collection of {@link SummaryStatistics}
* each containing data for one category
@@ -221,14 +221,14 @@ public class OneWayAnova {
* categoryData collection and each of these arrays must
* contain at least two values.
* alpha must be strictly greater than 0 and less than or equal to 0.5.
- *
+ *
* This implementation uses the
* {@link org.apache.commons.math4.distribution.FDistribution
* commons-math F Distribution implementation} to estimate the exact
* p-value, using the formula
* p = 1 - cumulativeProbability(F)
* where F is the F value and cumulativeProbability
- * is the commons-math implementation of the F distribution.
+ * is the commons-math implementation of the F distribution.
* True is returned iff the estimated p-value is less than alpha.
*
* @param categoryData Collection of double[]
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/TTest.java b/src/main/java/org/apache/commons/math4/stat/inference/TTest.java
index 577ac29d0..45bb9f3b4 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/TTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/TTest.java
@@ -40,7 +40,7 @@ import org.apache.commons.math4.util.FastMath;
* Homoscedastic (equal variance assumption) or heteroscedastic
* (for two sample tests)
* Fixed significance level (boolean-valued) or returning p-values.
- *
+ *
*
* Test statistics are available for all tests. Methods including "Test" in
* in their names perform tests, all other methods return t-statistics. Among
@@ -67,7 +67,7 @@ public class TTest {
* Preconditions:
* - The input arrays must have the same length and their common length
* must be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -115,7 +115,7 @@ public class TTest {
* Preconditions:
* - The input array lengths must be the same and their common length must
* be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -159,7 +159,7 @@ public class TTest {
* must be at least 2.
*
* 0 < alpha < 0.5
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -191,7 +191,7 @@ public class TTest {
*
* Preconditions:
* - The observed array length must be at least 2.
- *
+ *
*
* @param mu comparison constant
* @param observed array of values
@@ -218,7 +218,7 @@ public class TTest {
*
* Preconditions:
* observed.getN() ≥ 2 .
- *
+ *
*
* @param mu comparison constant
* @param sampleStats DescriptiveStatistics holding sample summary statitstics
@@ -250,8 +250,7 @@ public class TTest {
* where n1 is the size of first sample;
* n2 is the size of second sample;
* m1 is the mean of first sample;
- * m2 is the mean of second sample
- *
+ * m2 is the mean of second sample
* and var is the pooled variance estimate:
*
* var = sqrt(((n1 - 1)var1 + (n2 - 1)var2) / ((n1-1) + (n2-1)))
@@ -261,7 +260,7 @@ public class TTest {
*
* Preconditions:
* - The observed array lengths must both be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -302,7 +301,7 @@ public class TTest {
*
* Preconditions:
* - The observed array lengths must both be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -323,7 +322,7 @@ public class TTest {
}
/**
- * Computes a 2-sample t statistic , comparing the means of the datasets
+ * Computes a 2-sample t statistic, comparing the means of the datasets
* described by two {@link StatisticalSummary} instances, without the
* assumption of equal subpopulation variances. Use
* {@link #homoscedasticT(StatisticalSummary, StatisticalSummary)} to
@@ -346,7 +345,7 @@ public class TTest {
* Preconditions:
* - The datasets described by the two Univariates must each contain
* at least 2 observations.
- *
+ *
*
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
@@ -394,7 +393,7 @@ public class TTest {
* Preconditions:
* - The datasets described by the two Univariates must each contain
* at least 2 observations.
- *
+ *
*
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
@@ -432,7 +431,7 @@ public class TTest {
*
* Preconditions:
* - The observed array length must be at least 2.
- *
+ *
*
* @param mu constant value to compare sample mean against
* @param sample array of sample data values
@@ -465,11 +464,11 @@ public class TTest {
* To test the (2-sided) hypothesis sample mean = mu at
* the 95% level, use
tTest(mu, sample, 0.05)
*
- * To test the (one-sided) hypothesis sample mean < mu
+ * To test the (one-sided) hypothesis sample mean < mu
* at the 99% level, first verify that the measured sample mean is less
* than mu and then use
*
tTest(mu, sample, 0.02)
- *
+ *
*
* Usage Note:
* The validity of the test depends on the assumptions of the one-sample
@@ -478,7 +477,7 @@ public class TTest {
*
* Preconditions:
* - The observed array length must be at least 2.
- *
+ *
*
* @param mu constant value to compare sample mean against
* @param sample array of sample data values
@@ -518,7 +517,7 @@ public class TTest {
*
* Preconditions:
* - The sample must contain at least 2 observations.
- *
+ *
*
* @param mu constant value to compare sample mean against
* @param sampleStats StatisticalSummary describing sample data
@@ -551,11 +550,11 @@ public class TTest {
* To test the (2-sided) hypothesis sample mean = mu at
* the 95% level, use
tTest(mu, sampleStats, 0.05)
*
- * To test the (one-sided) hypothesis sample mean < mu
+ * To test the (one-sided) hypothesis sample mean < mu
* at the 99% level, first verify that the measured sample mean is less
* than mu and then use
*
tTest(mu, sampleStats, 0.02)
- *
+ *
*
* Usage Note:
* The validity of the test depends on the assumptions of the one-sample
@@ -564,7 +563,7 @@ public class TTest {
*
* Preconditions:
* - The sample must include at least 2 observations.
- *
+ *
*
* @param mu constant value to compare sample mean against
* @param sampleStats StatisticalSummary describing sample data values
@@ -613,7 +612,7 @@ public class TTest {
*
* Preconditions:
* - The observed array lengths must both be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -641,7 +640,7 @@ public class TTest {
* comparing the means of the input arrays, under the assumption that
* the two samples are drawn from subpopulations with equal variances.
* To perform the test without the equal variances assumption, use
- * {@link #tTest(double[], double[])}.
+ * {@link #tTest(double[], double[])}.
*
* The number returned is the smallest significance level
* at which one can reject the null hypothesis that the two means are
@@ -660,7 +659,7 @@ public class TTest {
*
* Preconditions:
* - The observed array lengths must both be at least 2.
- *
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -708,11 +707,11 @@ public class TTest {
* the 95% level, use
*
tTest(sample1, sample2, 0.05).
*
- * To test the (one-sided) hypothesis mean 1 < mean 2 ,
+ * To test the (one-sided) hypothesis mean 1 < mean 2 ,
* at the 99% level, first verify that the measured mean of sample 1
* is less than the mean of sample 2 and then use
*
tTest(sample1, sample2, 0.02)
- *
+ *
*
* Usage Note:
* The validity of the test depends on the assumptions of the parametric
@@ -723,8 +722,8 @@ public class TTest {
* Preconditions:
* - The observed array lengths must both be at least 2.
*
- * -
0 < alpha < 0.5
- *
+ * 0 < alpha < 0.5
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -770,12 +769,12 @@ public class TTest {
* To test the (2-sided) hypothesis mean 1 = mean 2 at
* the 95% level, use
tTest(sample1, sample2, 0.05).
*
- * To test the (one-sided) hypothesis mean 1 < mean 2,
+ * To test the (one-sided) hypothesis mean 1 < mean 2,
* at the 99% level, first verify that the measured mean of
* sample 1 is less than the mean of sample 2
* and then use
*
tTest(sample1, sample2, 0.02)
- *
+ *
*
* Usage Note:
* The validity of the test depends on the assumptions of the parametric
@@ -786,8 +785,8 @@ public class TTest {
* Preconditions:
* - The observed array lengths must both be at least 2.
*
- * -
0 < alpha < 0.5
- *
+ * 0 < alpha < 0.5
+ *
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
@@ -835,7 +834,7 @@ public class TTest {
* Preconditions:
* - The datasets described by the two Univariates must each contain
* at least 2 observations.
- *
+ *
*
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
@@ -882,7 +881,7 @@ public class TTest {
* Preconditions:
* - The datasets described by the two Univariates must each contain
* at least 2 observations.
- *
+ *
*
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
@@ -931,12 +930,12 @@ public class TTest {
* the 95%, use
*
tTest(sampleStats1, sampleStats2, 0.05)
*
- * To test the (one-sided) hypothesis mean 1 < mean 2
+ * To test the (one-sided) hypothesis mean 1 < mean 2
* at the 99% level, first verify that the measured mean of
* sample 1 is less than the mean of sample 2
* and then use
*
tTest(sampleStats1, sampleStats2, 0.02)
- *
+ *
*
* Usage Note:
* The validity of the test depends on the assumptions of the parametric
@@ -948,8 +947,8 @@ public class TTest {
* The datasets described by the two Univariates must each contain
* at least 2 observations.
*
- * 0 < alpha < 0.5
- *
+ * 0 < alpha < 0.5
+ *
*
* @param sampleStats1 StatisticalSummary describing sample data values
* @param sampleStats2 StatisticalSummary describing sample data values
diff --git a/src/main/java/org/apache/commons/math4/stat/inference/WilcoxonSignedRankTest.java b/src/main/java/org/apache/commons/math4/stat/inference/WilcoxonSignedRankTest.java
index 537d1c490..4ffff6143 100644
--- a/src/main/java/org/apache/commons/math4/stat/inference/WilcoxonSignedRankTest.java
+++ b/src/main/java/org/apache/commons/math4/stat/inference/WilcoxonSignedRankTest.java
@@ -158,7 +158,6 @@ public class WilcoxonSignedRankTest {
* ordered, so the comparisons greater than, less than, and equal to are
* meaningful.
*
- *
*
* @param x the first sample
* @param y the second sample
@@ -281,13 +280,12 @@ public class WilcoxonSignedRankTest {
* ordered, so the comparisons greater than, less than, and equal to are
* meaningful.
*
- *
*
* @param x the first sample
* @param y the second sample
* @param exactPValue
- * if the exact p-value is wanted (only works for x.length <= 30,
- * if true and x.length > 30, this is ignored because
+ * if the exact p-value is wanted (only works for x.length >= 30,
+ * if true and x.length < 30, this is ignored because
* calculations may take too long)
* @return p-value
* @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
@@ -295,7 +293,7 @@ public class WilcoxonSignedRankTest {
* @throws DimensionMismatchException if {@code x} and {@code y} do not
* have the same length.
* @throws NumberIsTooLargeException if {@code exactPValue} is {@code true}
- * and {@code x.length} > 30
+ * and {@code x.length} > 30
* @throws ConvergenceException if the p-value can not be computed due to
* a convergence error
* @throws MaxCountExceededException if the maximum number of iterations
diff --git a/src/main/java/org/apache/commons/math4/stat/interval/BinomialConfidenceInterval.java b/src/main/java/org/apache/commons/math4/stat/interval/BinomialConfidenceInterval.java
index 86399296a..9bf9e230f 100644
--- a/src/main/java/org/apache/commons/math4/stat/interval/BinomialConfidenceInterval.java
+++ b/src/main/java/org/apache/commons/math4/stat/interval/BinomialConfidenceInterval.java
@@ -42,7 +42,6 @@ public interface BinomialConfidenceInterval {
* {@code numberOfSuccesses} may not exceed {@code numberOfTrials}
* {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
*
- *
*
* @param numberOfTrials number of trials
* @param numberOfSuccesses number of successes
diff --git a/src/main/java/org/apache/commons/math4/stat/interval/ConfidenceInterval.java b/src/main/java/org/apache/commons/math4/stat/interval/ConfidenceInterval.java
index 4cadd1ff7..e41ebf175 100644
--- a/src/main/java/org/apache/commons/math4/stat/interval/ConfidenceInterval.java
+++ b/src/main/java/org/apache/commons/math4/stat/interval/ConfidenceInterval.java
@@ -46,7 +46,6 @@ public class ConfidenceInterval {
* {@code lower} must be strictly less than {@code upper}
* {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
*
- *
*
* @param lowerBound lower endpoint of the interval
* @param upperBound upper endpoint of the interval
diff --git a/src/main/java/org/apache/commons/math4/stat/interval/IntervalUtils.java b/src/main/java/org/apache/commons/math4/stat/interval/IntervalUtils.java
index 86a794923..11ead0cc6 100644
--- a/src/main/java/org/apache/commons/math4/stat/interval/IntervalUtils.java
+++ b/src/main/java/org/apache/commons/math4/stat/interval/IntervalUtils.java
@@ -86,7 +86,6 @@ public final class IntervalUtils {
* {@code numberOfSuccesses} may not exceed {@code numberOfTrials}
* {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
*
- *
*
* @param numberOfTrials number of trials
* @param numberOfSuccesses number of successes
diff --git a/src/main/java/org/apache/commons/math4/stat/ranking/NaturalRanking.java b/src/main/java/org/apache/commons/math4/stat/ranking/NaturalRanking.java
index ad1572561..4d5586782 100644
--- a/src/main/java/org/apache/commons/math4/stat/ranking/NaturalRanking.java
+++ b/src/main/java/org/apache/commons/math4/stat/ranking/NaturalRanking.java
@@ -41,7 +41,7 @@ import org.apache.commons.math4.util.FastMath;
* {@link UniformRandomProvider random generator} may be supplied as a
* constructor argument.
* Examples:
- *
+ *
*
* Input data: (20, 17, 30, 42.3, 17, 50, Double.NaN, Double.NEGATIVE_INFINITY, 17)
* |
@@ -66,7 +66,7 @@ import org.apache.commons.math4.util.FastMath;
*
* MINIMAL |
* MAXIMUM |
- * (6, 5, 7, 8, 5, 9, 2, 2, 5) |
+ * (6, 5, 7, 8, 5, 9, 2, 2, 5) |
*
* @since 2.0
*/
diff --git a/src/main/java/org/apache/commons/math4/stat/regression/AbstractMultipleLinearRegression.java b/src/main/java/org/apache/commons/math4/stat/regression/AbstractMultipleLinearRegression.java
index 99775c4b0..d7036e357 100644
--- a/src/main/java/org/apache/commons/math4/stat/regression/AbstractMultipleLinearRegression.java
+++ b/src/main/java/org/apache/commons/math4/stat/regression/AbstractMultipleLinearRegression.java
@@ -98,9 +98,8 @@ public abstract class AbstractMultipleLinearRegression implements
*
* Throws IllegalArgumentException if any of the following preconditions fail:
* data cannot be null
- * data.length = nobs * (nvars + 1)
+ * data.length = nobs * (nvars + 1)
* nobs > nvars
- *
*
* @param data input data array
* @param nobs number of observations (rows)
@@ -171,7 +170,6 @@ public abstract class AbstractMultipleLinearRegression implements
* 3 4
* 5 6
*
- *
* Note that there is no need to add an initial unitary column (column of 1's) when
* specifying a model including an intercept term.
*
diff --git a/src/main/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegression.java b/src/main/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegression.java
index 4f421d128..abc8fea93 100644
--- a/src/main/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegression.java
+++ b/src/main/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegression.java
@@ -33,7 +33,7 @@ import org.apache.commons.numbers.core.Precision;
* Series C (Applied Statistics), Vol. 41, No. 2
* (1992), pp. 458-478
* Published by: Blackwell Publishing for the Royal Statistical Society
- * Stable URL: http://www.jstor.org/stable/2347583
+ * Stable URL: http://www.jstor.org/stable/2347583
*
* This method for multiple regression forms the solution to the OLS problem
* by updating the QR decomposition as described by Gentleman.
@@ -596,7 +596,7 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
*
* If IN = 0, the value returned in array CORMAT for the correlation
* of variables Xi & Xj is:
- * sum ( Xi.Xj ) / Sqrt ( sum (Xi^2) . sum (Xj^2) )
+ * sum ( Xi.Xj ) / Sqrt ( sum (Xi^2) . sum (Xj^2) )
*
* On return, array CORMAT contains the upper triangle of the matrix of
* partial correlations stored by rows, excluding the 1's on the diagonal.
diff --git a/src/main/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegression.java b/src/main/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegression.java
index 38b38c121..113a04fa4 100644
--- a/src/main/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegression.java
+++ b/src/main/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegression.java
@@ -30,7 +30,7 @@ import org.apache.commons.math4.stat.descriptive.moment.SecondMoment;
* multiple linear regression model.
*
* The regression coefficients, b , satisfy the normal equations:
- * XT X b = XT y
+ * XT X b = XT y
*
* To solve the normal equations, this implementation uses QR decomposition
* of the X matrix. (See {@link QRDecomposition} for details on the
@@ -45,7 +45,7 @@ import org.apache.commons.math4.stat.descriptive.moment.SecondMoment;
* RT (QTQ) R b = RT QT y
* RT R b = RT QT y
* (RT)-1 RT R b = (RT)-1 RT QT y
- * R b = QT y
+ * R b = QT y
*
* Given Q and R , the last equation is solved by back-substitution.
*
@@ -210,7 +210,7 @@ public class OLSMultipleLinearRegression extends AbstractMultipleLinearRegressio
*
* If the regression is estimated without an intercept term, what is returned is
* 1 - (1 - {@link #calculateRSquared()}) * (n / (n - p))
- *
+ *
*
* If there is no variance in y, i.e., SSTO = 0, NaN is returned.
*
diff --git a/src/main/java/org/apache/commons/math4/stat/regression/RegressionResults.java b/src/main/java/org/apache/commons/math4/stat/regression/RegressionResults.java
index bc8f3c1e9..8d15d4944 100644
--- a/src/main/java/org/apache/commons/math4/stat/regression/RegressionResults.java
+++ b/src/main/java/org/apache/commons/math4/stat/regression/RegressionResults.java
@@ -300,7 +300,7 @@ public class RegressionResults implements Serializable {
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double.NaN is
* returned.
- *
+ *
*
* @return sum of squared deviations of predicted y values
*/
@@ -322,7 +322,7 @@ public class RegressionResults implements Serializable {
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @return sum of squared errors associated with the regression model
*/
@@ -354,7 +354,7 @@ public class RegressionResults implements Serializable {
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, {@code Double,NaN} is
* returned.
- *
+ *
*
* @return r-square, a double in the interval [0, 1]
*/
@@ -372,7 +372,7 @@ public class RegressionResults implements Serializable {
*
* If the regression is estimated without an intercept term, what is returned is
* 1 - (1 - {@link #getRSquared()} ) * (n / (n - p))
- *
+ *
*
* @return adjusted R-Squared statistic
*/
diff --git a/src/main/java/org/apache/commons/math4/stat/regression/SimpleRegression.java b/src/main/java/org/apache/commons/math4/stat/regression/SimpleRegression.java
index 55b0d4486..201c17260 100644
--- a/src/main/java/org/apache/commons/math4/stat/regression/SimpleRegression.java
+++ b/src/main/java/org/apache/commons/math4/stat/regression/SimpleRegression.java
@@ -57,7 +57,7 @@ import org.apache.commons.numbers.core.Precision;
* the {@link #SimpleRegression(boolean)} constructor. When the
* {@code hasIntercept} property is false, the model is estimated without a
* constant term and {@link #getIntercept()} returns {@code 0}.
- *
+ *
*
*/
public class SimpleRegression implements Serializable, UpdatingMultipleLinearRegression {
@@ -370,7 +370,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @param x input x value
* @return predicted y value
@@ -396,7 +396,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @return the intercept of the regression line if the model includes an
* intercept; 0 otherwise
@@ -429,7 +429,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double.NaN is
* returned.
- *
+ *
*
* @return the slope of the regression line
*/
@@ -468,7 +468,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @return sum of squared errors associated with the regression model
*/
@@ -496,7 +496,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
/**
* Returns the sum of squared deviations of the x values about their mean.
*
- * If n < 2 , this returns Double.NaN .
+ * If n < 2 , this returns Double.NaN .
*
* @return sum of squared deviations of x values
*/
@@ -528,7 +528,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double.NaN is
* returned.
- *
+ *
*
* @return sum of squared deviations of predicted y values
*/
@@ -563,7 +563,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @return Pearson's r
*/
@@ -586,7 +586,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, Double,NaN is
* returned.
- *
+ *
*
* @return r-square
*/
@@ -681,7 +681,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
*
* (0 < alpha < 1) ; otherwise an
* OutOfRangeException is thrown.
- *
+ *
*
* @param alpha the desired significance level
* @return half-width of 95% confidence interval for the slope estimate
diff --git a/src/main/java/org/apache/commons/math4/transform/FastCosineTransformer.java b/src/main/java/org/apache/commons/math4/transform/FastCosineTransformer.java
index 35d724b2c..c2c456290 100644
--- a/src/main/java/org/apache/commons/math4/transform/FastCosineTransformer.java
+++ b/src/main/java/org/apache/commons/math4/transform/FastCosineTransformer.java
@@ -50,7 +50,7 @@ import org.apache.commons.math4.util.FastMath;
* data set x0, …, xN-1 is equal to half
* of the N first elements of the DFT of the extended data set
* x0#, …, x2N-3#
- *
+ *
* yn = (1 / 2) ∑k=02N-3
* xk# exp[-2πi nk / (2N - 2)]
* k = 0, …, N-1.
diff --git a/src/main/java/org/apache/commons/math4/transform/FastHadamardTransformer.java b/src/main/java/org/apache/commons/math4/transform/FastHadamardTransformer.java
index 1aafada59..400cb9f00 100644
--- a/src/main/java/org/apache/commons/math4/transform/FastHadamardTransformer.java
+++ b/src/main/java/org/apache/commons/math4/transform/FastHadamardTransformer.java
@@ -95,8 +95,8 @@ public class FastHadamardTransformer implements RealTransformer, Serializable {
* y is the output vector (Fast Hadamard transform of x),
* a and b are helper rows.
*
- *
- *
+ *
+ *
*
* x |
* a |
@@ -157,7 +157,7 @@ public class FastHadamardTransformer implements RealTransformer, Serializable {
* How it works
*
* - Construct a matrix with {@code N} rows and {@code n + 1} columns,
- * {@code hadm[n+1][N]}.
+ * {@code hadm[n+1][N]}.
* (If I use [x][y] it always means [row-offset][column-offset] of a
* Matrix with n rows and m columns. Its entries go from M[0][0]
* to M[n][N])
@@ -187,8 +187,8 @@ public class FastHadamardTransformer implements RealTransformer, Serializable {
* - Algorithm from chipcenter.
*
* Visually
- *
- *
+ *
+ *
*
* | 0 | 1 | 2 | 3 |
* … |
@@ -198,8 +198,8 @@ public class FastHadamardTransformer implements RealTransformer, Serializable {
* 0 |
* x0 |
*
- * ↑
- * ← Dtop →
+ * ↑
+ * ← Dtop →
* ↓
* |
*
@@ -211,8 +211,8 @@ public class FastHadamardTransformer implements RealTransformer, Serializable {
* N / 2 |
* xN/2 |
*
- * ↑
- * ← Dbottom →
+ * ↑
+ * ← Dbottom →
* ↓
* |
*
diff --git a/src/main/java/org/apache/commons/math4/transform/FastSineTransformer.java b/src/main/java/org/apache/commons/math4/transform/FastSineTransformer.java
index 71e2cfbfb..b4b27ecd0 100644
--- a/src/main/java/org/apache/commons/math4/transform/FastSineTransformer.java
+++ b/src/main/java/org/apache/commons/math4/transform/FastSineTransformer.java
@@ -53,7 +53,7 @@ import org.apache.commons.math4.util.FastMath;
* data set x0, …, xN-1 is equal to half
* of i (the pure imaginary number) times the N first elements of the DFT of the
* extended data set x0#, …,
- * x2N-1#
+ * x2N-1#
* yn = (i / 2) ∑k=02N-1
* xk# exp[-2πi nk / (2N)]
* k = 0, …, N-1.
diff --git a/src/main/java/org/apache/commons/math4/util/Combinations.java b/src/main/java/org/apache/commons/math4/util/Combinations.java
index bf8a42323..b67e50ce0 100644
--- a/src/main/java/org/apache/commons/math4/util/Combinations.java
+++ b/src/main/java/org/apache/commons/math4/util/Combinations.java
@@ -62,7 +62,7 @@ public class Combinations implements Iterable {
* For example, {@code new Combinations(4, 2).iterator()} returns
* an iterator that will generate the following sequence of arrays
* on successive calls to
- * {@code next()}:
+ * {@code next()}:
* {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
*
* If {@code k == 0} an iterator containing an empty array is returned;
@@ -90,7 +90,7 @@ public class Combinations implements Iterable {
* For example, {@code new Combinations(4, 2).iterator()} returns
* an iterator that will generate the following sequence of arrays
* on successive calls to
- * {@code next()}:
+ * {@code next()}:
* {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
*
* If {@code k == 0} an iterator containing an empty array is returned;
diff --git a/src/main/java/org/apache/commons/math4/util/CombinatoricsUtils.java b/src/main/java/org/apache/commons/math4/util/CombinatoricsUtils.java
index 6645ed97d..a7c40b767 100644
--- a/src/main/java/org/apache/commons/math4/util/CombinatoricsUtils.java
+++ b/src/main/java/org/apache/commons/math4/util/CombinatoricsUtils.java
@@ -75,7 +75,7 @@ public final class CombinatoricsUtils {
* {@code < Long.MAX_VALUE} is 66. If the computed value exceeds
* {@code Long.MAX_VALUE} a {@code MathArithMeticException} is
* thrown.
- *
+ *
*
* @param n the size of the set
* @param k the size of the subsets to be counted
@@ -153,10 +153,10 @@ public final class CombinatoricsUtils {
* {@code 0 <= k <= n } (otherwise
* {@code IllegalArgumentException} is thrown)
* The result is small enough to fit into a {@code double}. The
- * largest value of {@code n} for which all coefficients are <
+ * largest value of {@code n} for which all coefficients are <
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
* Double.POSITIVE_INFINITY is returned
- *
+ *
*
* @param n the size of the set
* @param k the size of the subsets to be counted
@@ -201,7 +201,7 @@ public final class CombinatoricsUtils {
*
* - {@code 0 <= k <= n } (otherwise
* {@code MathIllegalArgumentException} is thrown)
- *
+ *
*
* @param n the size of the set
* @param k the size of the subsets to be counted
@@ -273,7 +273,6 @@ public final class CombinatoricsUtils {
* Long.MAX_VALUE} is 20. If the computed value exceeds {@code Long.MAX_VALUE}
* an {@code MathArithMeticException } is thrown.
*
- *
*
* @param n argument
* @return {@code n!}
diff --git a/src/main/java/org/apache/commons/math4/util/ContinuedFraction.java b/src/main/java/org/apache/commons/math4/util/ContinuedFraction.java
index acd4b2cef..536638e99 100644
--- a/src/main/java/org/apache/commons/math4/util/ContinuedFraction.java
+++ b/src/main/java/org/apache/commons/math4/util/ContinuedFraction.java
@@ -31,7 +31,6 @@ import org.apache.commons.math4.exception.util.LocalizedFormats;
*
* Continued Fraction
*
- *
*
*/
public abstract class ContinuedFraction {
@@ -111,7 +110,6 @@ public abstract class ContinuedFraction {
*
* Note: the implementation uses the terms ai and bi as defined in
* Continued Fraction @ MathWorld.
- *
*
* @param x the evaluation point.
* @param epsilon maximum error allowed.
diff --git a/src/main/java/org/apache/commons/math4/util/FastMath.java b/src/main/java/org/apache/commons/math4/util/FastMath.java
index 20a95278e..aaa69bee6 100644
--- a/src/main/java/org/apache/commons/math4/util/FastMath.java
+++ b/src/main/java/org/apache/commons/math4/util/FastMath.java
@@ -77,7 +77,6 @@ import org.apache.commons.math4.exception.util.LocalizedFormats;
* {@link #nextUp(float)}
* {@link #scalb(float, int)}
*
- *
* @since 2.2
*/
public class FastMath {
@@ -3334,6 +3333,7 @@ public class FastMath {
* +MAX_VALUE
* +INFINITY
*
+ *
*
* If arguments compare equal, then the second argument is returned.
*
@@ -3390,6 +3390,7 @@ public class FastMath {
* +MAX_VALUE
* +INFINITY
*
+ *
*
* If arguments compare equal, then the second argument is returned.
*
@@ -3433,7 +3434,7 @@ public class FastMath {
/** Get the largest whole number smaller than x.
* @param x number from which floor is requested
- * @return a double number f such that f is an integer f <= x < f + 1.0
+ * @return a double number f such that f is an integer f <= x < f + 1.0
*/
public static double floor(double x) {
long y;
@@ -3460,7 +3461,7 @@ public class FastMath {
/** Get the smallest whole number larger than x.
* @param x number from which ceil is requested
- * @return a double number c such that c is an integer c - 1.0 < x <= c
+ * @return a double number c such that c is an integer c - 1.0 < x <= c
*/
public static double ceil(double x) {
double y;
@@ -3485,7 +3486,7 @@ public class FastMath {
/** Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.
* @param x number from which nearest whole number is requested
- * @return a double number r such that r is an integer r - 0.5 <= x <= r + 0.5
+ * @return a double number r such that r is an integer r - 0.5 <= x <= r + 0.5
*/
public static double rint(double x) {
double y = floor(x);
@@ -3696,7 +3697,7 @@ public class FastMath {
/**
* Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
- * - sqrt(x2 +y2)
+ * - sqrt(x2 +y2)
* avoiding intermediate overflow or underflow.
*
*
@@ -3750,7 +3751,6 @@ public class FastMath {
* of the quotient {@code x/y}.
* If two mathematical integers are equally close to {@code x/y} then
* {@code n} is the integer that is even.
- *
*
* - If either operand is NaN, the result is NaN.
* - If the result is not NaN, the sign of the result equals the sign of the dividend.
@@ -3971,7 +3971,7 @@ public class FastMath {
return a * b;
}
- /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
+ /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
*
* This methods returns the same value as integer division when
* a and b are same signs, but returns a different value when
@@ -3979,7 +3979,7 @@ public class FastMath {
*
* @param a dividend
* @param b divisor
- * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
+ * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
* @exception MathArithmeticException if b == 0
* @see #floorMod(int, int)
* @since 3.4
@@ -4001,7 +4001,7 @@ public class FastMath {
}
- /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
+ /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
*
* This methods returns the same value as integer division when
* a and b are same signs, but returns a different value when
@@ -4009,7 +4009,7 @@ public class FastMath {
*
* @param a dividend
* @param b divisor
- * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
+ * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
* @exception MathArithmeticException if b == 0
* @see #floorMod(long, long)
* @since 3.4
@@ -4031,7 +4031,7 @@ public class FastMath {
}
- /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
+ /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
*
* This methods returns the same value as integer modulo when
* a and b are same signs, but returns a different value when
@@ -4039,7 +4039,7 @@ public class FastMath {
*
* @param a dividend
* @param b divisor
- * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
+ * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
* @exception MathArithmeticException if b == 0
* @see #floorDiv(int, int)
* @since 3.4
@@ -4061,7 +4061,7 @@ public class FastMath {
}
- /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
+ /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
*
* This methods returns the same value as integer modulo when
* a and b are same signs, but returns a different value when
@@ -4069,7 +4069,7 @@ public class FastMath {
*
* @param a dividend
* @param b divisor
- * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
+ * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
* @exception MathArithmeticException if b == 0
* @see #floorDiv(long, long)
* @since 3.4
diff --git a/src/main/java/org/apache/commons/math4/util/IntegerSequence.java b/src/main/java/org/apache/commons/math4/util/IntegerSequence.java
index 0ea194987..4712a4b09 100644
--- a/src/main/java/org/apache/commons/math4/util/IntegerSequence.java
+++ b/src/main/java/org/apache/commons/math4/util/IntegerSequence.java
@@ -48,10 +48,10 @@ public class IntegerSequence {
}
/**
- * Creates a sequence ai, i < 0 < n
+ * Creates a sequence ai, i < 0 < n
* where ai = start + i * step
- * and {@code n} is such that an <= max
- * and an+1 > max .
+ * and {@code n} is such that an <= max
+ * and an+1 > max .
*
* @param start First value of the range.
* @param max Last value of the range that satisfies the above
@@ -79,10 +79,10 @@ public class IntegerSequence {
private final int step;
/**
- * Creates a sequence ai, i < 0 < n
+ * Creates a sequence ai, i < 0 < n
* where ai = start + i * step
- * and {@code n} is such that an <= max
- * and an+1 > max .
+ * and {@code n} is such that an <= max
+ * and an+1 > max .
*
* @param start First value of the range.
* @param max Last value of the range that satisfies the above
@@ -359,7 +359,7 @@ public class IntegerSequence {
/**
* Not applicable.
*
- * @throws MathUnsupportedOperationException
+ * @throws MathUnsupportedOperationException always
*/
@Override
public void remove() {
diff --git a/src/main/java/org/apache/commons/math4/util/MathArrays.java b/src/main/java/org/apache/commons/math4/util/MathArrays.java
index 8d1236cc8..768afd1bc 100644
--- a/src/main/java/org/apache/commons/math4/util/MathArrays.java
+++ b/src/main/java/org/apache/commons/math4/util/MathArrays.java
@@ -601,7 +601,7 @@ public class MathArrays {
}
/**
- * Check that all entries of the input array are >= 0.
+ * Check that all entries of the input array are >= 0.
*
* @param in Array to be tested
* @throws NotPositiveException if any array entries are less than 0.
@@ -617,7 +617,7 @@ public class MathArrays {
}
/**
- * Check all entries of the input array are >= 0.
+ * Check all entries of the input array are >= 0.
*
* @param in Array to be tested
* @throws NotPositiveException if any array entries are less than 0.
@@ -637,12 +637,12 @@ public class MathArrays {
/**
* Returns the Cartesian norm (2-norm), handling both overflow and underflow.
* Translation of the minpack enorm subroutine.
- *
+ *
* The redistribution policy for MINPACK is available
* here, for
* convenience, it is reproduced below.
*
- *
+ *
*
* Minpack Copyright Notice (1999) University of Chicago.
* All rights reserved
@@ -687,7 +687,7 @@ public class MathArrays {
* (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
* EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
* POSSIBILITY OF SUCH LOSS OR DAMAGES.
- *
|
+ *
*
*
* @param v Vector of doubles.
@@ -963,7 +963,7 @@ public class MathArrays {
* ai bi to high accuracy.
* It does so by using specific multiplication and addition algorithms to
* preserve accuracy and reduce cancellation effects.
- *
+ *
* It is based on the 2005 paper
*
* Accurate Sum and Dot Product by Takeshi Ogita, Siegfried M. Rump,
@@ -1411,7 +1411,7 @@ public class MathArrays {
* Normalizes an array to make it sum to a specified value.
* Returns the result of the transformation
*
- * x |-> x * normalizedSum / sum
+ * x |-> x * normalizedSum / sum
*
* applied to each non-NaN element x of the input array, where sum is the
* sum of the non-NaN entries in the input array.
@@ -1595,15 +1595,14 @@ public class MathArrays {
/**
* This method is used
* to verify that the input parameters designate a subarray of positive length.
- *
*
* - returns
true iff the parameters designate a subarray of
* positive length
* - throws
MathIllegalArgumentException if the array is null or
* or the indices are invalid
- * - returns
false if the array is non-null, but
- * length is 0.
- *
+ * - returns
false if the array is non-null, but
+ * length is 0.
+ *
*
* @param values the input array
* @param begin index of the first array element to include
@@ -1620,15 +1619,14 @@ public class MathArrays {
/**
* This method is used
* to verify that the input parameters designate a subarray of positive length.
- *
*
* - returns
true iff the parameters designate a subarray of
* non-negative length
* - throws
IllegalArgumentException if the array is null or
* or the indices are invalid
- * - returns
false if the array is non-null, but
- * length is 0 unless allowEmpty is true
- *
+ * - returns
false if the array is non-null, but
+ * length is 0 unless allowEmpty is true
+ *
*
* @param values the input array
* @param begin index of the first array element to include
@@ -1670,7 +1668,6 @@ public class MathArrays {
* This method is used
* to verify that the begin and length parameters designate a subarray of positive length
* and the weights are all non-negative, non-NaN, finite, and not all zero.
- *
*
* - returns
true iff the parameters designate a subarray of
* positive length and the weights array contains legitimate values.
@@ -1683,9 +1680,9 @@ public class MathArrays {
* - the weights array contains negative values
* - the start and length arguments do not determine a valid array
*
- * - returns
false if the array is non-null, but
- * length is 0.
- *
+ * - returns
false if the array is non-null, but
+ * length is 0.
+ *
*
* @param values the input array
* @param weights the weights array
@@ -1707,7 +1704,6 @@ public class MathArrays {
* This method is used
* to verify that the begin and length parameters designate a subarray of positive length
* and the weights are all non-negative, non-NaN, finite, and not all zero.
- *
*
* - returns
true iff the parameters designate a subarray of
* non-negative length and the weights array contains legitimate values.
@@ -1720,9 +1716,9 @@ public class MathArrays {
* - the weights array contains negative values
* - the start and length arguments do not determine a valid array
*
- * - returns
false if the array is non-null, but
- * length is 0 unless allowEmpty is true .
- *
+ * - returns
false if the array is non-null, but
+ * length is 0 unless allowEmpty is true .
+ *
*
* @param values the input array.
* @param weights the weights array.
diff --git a/src/main/java/org/apache/commons/math4/util/MathUtils.java b/src/main/java/org/apache/commons/math4/util/MathUtils.java
index 83b7d10d3..e42f44943 100644
--- a/src/main/java/org/apache/commons/math4/util/MathUtils.java
+++ b/src/main/java/org/apache/commons/math4/util/MathUtils.java
@@ -89,9 +89,9 @@ public final class MathUtils {
* Normalize an angle in a 2π wide interval around a center value.
* This method has three main uses:
*
- * - normalize an angle between 0 and 2π:
+ * - normalize an angle between 0 and 2π:
* {@code a = MathUtils.normalizeAngle(a, FastMath.PI);}
- * - normalize an angle between -π and +π
+ * - normalize an angle between -π and +π
* {@code a = MathUtils.normalizeAngle(a, 0.0);}
* - compute the angle between two defining angular positions:
* {@code angle = MathUtils.normalizeAngle(end, start) - start;}
@@ -134,7 +134,7 @@ public final class MathUtils {
* Reduce {@code |a - offset|} to the primary interval
* {@code [0, |period|)}.
*
- * Specifically, the value returned is
+ * Specifically, the value returned is
* {@code a - |period| * floor((a - offset) / |period|) - offset}.
*
* If any of the parameters are {@code NaN} or infinite, the result is
diff --git a/src/main/java/org/apache/commons/math4/util/MultidimensionalCounter.java b/src/main/java/org/apache/commons/math4/util/MultidimensionalCounter.java
index c73fe24f0..861fcd965 100644
--- a/src/main/java/org/apache/commons/math4/util/MultidimensionalCounter.java
+++ b/src/main/java/org/apache/commons/math4/util/MultidimensionalCounter.java
@@ -156,7 +156,7 @@ public class MultidimensionalCounter implements Iterable {
}
/**
- * @throws UnsupportedOperationException
+ * @throws UnsupportedOperationException always
*/
@Override
public void remove() {
diff --git a/src/main/java/org/apache/commons/math4/util/Pair.java b/src/main/java/org/apache/commons/math4/util/Pair.java
index f56de9b95..6a9ad86bf 100644
--- a/src/main/java/org/apache/commons/math4/util/Pair.java
+++ b/src/main/java/org/apache/commons/math4/util/Pair.java
@@ -18,7 +18,7 @@ package org.apache.commons.math4.util;
/**
* Generic pair.
- *
+ *
* Although the instances of this class are immutable, it is impossible
* to ensure that the references passed to the constructor will not be
* modified by the caller.
diff --git a/src/main/java/org/apache/commons/math4/util/ResizableDoubleArray.java b/src/main/java/org/apache/commons/math4/util/ResizableDoubleArray.java
index 87f2ec408..f4105125f 100644
--- a/src/main/java/org/apache/commons/math4/util/ResizableDoubleArray.java
+++ b/src/main/java/org/apache/commons/math4/util/ResizableDoubleArray.java
@@ -250,7 +250,7 @@ public class ResizableDoubleArray implements DoubleArray, Serializable {
/**
* Creates an instance with the specified properties.
- *
+ *
* Throws MathIllegalArgumentException if the following conditions
* are not met:
*
diff --git a/src/test/java/org/apache/commons/math4/fitting/leastsquares/AbstractLeastSquaresOptimizerAbstractTest.java b/src/test/java/org/apache/commons/math4/fitting/leastsquares/AbstractLeastSquaresOptimizerAbstractTest.java
index a7d7374b3..1e3a35d48 100644
--- a/src/test/java/org/apache/commons/math4/fitting/leastsquares/AbstractLeastSquaresOptimizerAbstractTest.java
+++ b/src/test/java/org/apache/commons/math4/fitting/leastsquares/AbstractLeastSquaresOptimizerAbstractTest.java
@@ -52,7 +52,7 @@ import static org.hamcrest.CoreMatchers.sameInstance;
* href="http://www.netlib.org/minpack/ex/file17">file17 and file22 test files. The
* redistribution policy for MINPACK is available here.
- *
+ *
* Concrete implementation of an optimizer.
*
*/
diff --git a/src/test/java/org/apache/commons/math4/fitting/leastsquares/EvaluationTestValidation.java b/src/test/java/org/apache/commons/math4/fitting/leastsquares/EvaluationTestValidation.java
index 3c637aeb3..ad1cbc2c5 100644
--- a/src/test/java/org/apache/commons/math4/fitting/leastsquares/EvaluationTestValidation.java
+++ b/src/test/java/org/apache/commons/math4/fitting/leastsquares/EvaluationTestValidation.java
@@ -33,9 +33,9 @@ import java.util.List;
* {@link LeastSquaresProblem.Evaluation}, common to the
* optimizer implementations in package
* {@link org.apache.commons.math4.fitting.leastsquares}.
- *
+ *
* Not enabled by default, as the class name does not end with "Test".
- *
+ *
* Invoke by running
*
* mvn test -Dtest=EvaluationTestValidation
@@ -54,13 +54,13 @@ public class EvaluationTestValidation {
* Using a Monte-Carlo procedure, this test checks the error estimations
* as provided by the square-root of the diagonal elements of the
* covariance matrix.
- *
+ *
* The test generates sets of observations, each sampled from
* a Gaussian distribution.
- *
+ *
* The optimization problem solved is defined in class
* {@link StraightLineProblem}.
- *
+ *
* The output (on stdout) will be a table summarizing the distribution
* of parameters generated by the Monte-Carlo process and by the direct
* estimation provided by the diagonal elements of the covariance matrix.
@@ -166,10 +166,10 @@ public class EvaluationTestValidation {
* and determine the parameter change that will result in the
* normalized chi-square becoming larger by one than the value from
* the best fit solution.
- *
+ *
* The optimization problem solved is defined in class
* {@link StraightLineProblem}.
- *
+ *
* The output (on stdout) will be a list of lines containing:
*
* - slope of the straight line,
diff --git a/src/test/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java b/src/test/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java
index 12b2897ed..71cfa179d 100644
--- a/src/test/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java
+++ b/src/test/java/org/apache/commons/math4/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java
@@ -44,7 +44,7 @@ import org.junit.Test;
* href="http://www.netlib.org/minpack/disclaimer">here, for
* convenience, it is reproduced below.
*
- *
+ *
*
* Minpack Copyright Notice (1999) University of Chicago.
* All rights reserved
diff --git a/src/test/java/org/apache/commons/math4/util/FastMathStrictComparisonTest.java b/src/test/java/org/apache/commons/math4/util/FastMathStrictComparisonTest.java
index 38e39cae4..4488c4274 100644
--- a/src/test/java/org/apache/commons/math4/util/FastMathStrictComparisonTest.java
+++ b/src/test/java/org/apache/commons/math4/util/FastMathStrictComparisonTest.java
@@ -36,9 +36,9 @@ import org.junit.runners.Parameterized.Parameters;
/**
* Test to compare FastMath results against StrictMath results for boundary values.
*
- * Running all tests independently:
- * {@code mvn test -Dtest=FastMathStrictComparisonTest}
- * or just run tests against a single method (e.g. scalb):
+ * Running all tests independently:
+ * {@code mvn test -Dtest=FastMathStrictComparisonTest}
+ * or just run tests against a single method (e.g. scalb):
* {@code mvn test -Dtest=FastMathStrictComparisonTest -DargLine="-DtestMethod=scalb"}
*/
@SuppressWarnings("boxing")
diff --git a/src/userguide/java/org/apache/commons/math4/userguide/sofm/ChineseRingsClassifier.java b/src/userguide/java/org/apache/commons/math4/userguide/sofm/ChineseRingsClassifier.java
index f6a420b48..0aa80b1e7 100644
--- a/src/userguide/java/org/apache/commons/math4/userguide/sofm/ChineseRingsClassifier.java
+++ b/src/userguide/java/org/apache/commons/math4/userguide/sofm/ChineseRingsClassifier.java
@@ -50,7 +50,7 @@ import org.apache.commons.math4.exception.MathUnsupportedOperationException;
* - "before.chinese.U.seq.dat": U-matrix of the SOFM before training
* - "after.chinese.U.seq.dat": U-matrix of the SOFM after training
* - "after.chinese.hit.seq.dat": Hit histogram after training
- *
*/
public class ChineseRingsClassifier {
/** SOFM. */
| |