Eliminated tabs.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@201915 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
3524bd6ca6
commit
540caa1add
|
@ -94,7 +94,7 @@ public class PolynomialSplineFunction implements UnivariateRealFunction, Seriali
|
|||
public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[]) {
|
||||
if (knots.length < 2) {
|
||||
throw new IllegalArgumentException
|
||||
("Not enough knot values -- spline partition must have at least 2 points.");
|
||||
("Not enough knot values -- spline partition must have at least 2 points.");
|
||||
}
|
||||
if (knots.length - 1 != polynomials.length) {
|
||||
throw new IllegalArgumentException
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>
|
||||
Implementations of common numerical analysis procedures, including root finding and function interpolation.
|
||||
</body>
|
||||
|
|
|
@ -120,7 +120,7 @@ public class ComplexFormat extends Format implements Serializable {
|
|||
* @return A formatted number in the form "Re(c) + Im(c)i"
|
||||
*/
|
||||
public static String formatComplex( Complex c ) {
|
||||
return getInstance().format( c );
|
||||
return getInstance().format( c );
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>
|
||||
Complex number type and implementations of complex transcendental
|
||||
functions.
|
||||
|
|
|
@ -105,7 +105,7 @@ public abstract class AbstractIntegerDistribution extends AbstractDistribution
|
|||
public double cumulativeProbability(int x0, int x1) throws MathException {
|
||||
if (x0 > x1) {
|
||||
throw new IllegalArgumentException
|
||||
("lower endpoint must be less than or equal to upper endpoint");
|
||||
("lower endpoint must be less than or equal to upper endpoint");
|
||||
}
|
||||
return cumulativeProbability(x1) - cumulativeProbability(x0 - 1);
|
||||
}
|
||||
|
|
|
@ -152,10 +152,10 @@ public class BinomialDistributionImpl
|
|||
ret = 0.0;
|
||||
} else {
|
||||
ret = MathUtils.binomialCoefficientDouble(
|
||||
getNumberOfTrials(), x) *
|
||||
Math.pow(getProbabilityOfSuccess(), x) *
|
||||
Math.pow(1.0 - getProbabilityOfSuccess(),
|
||||
getNumberOfTrials() - x);
|
||||
getNumberOfTrials(), x) *
|
||||
Math.pow(getProbabilityOfSuccess(), x) *
|
||||
Math.pow(1.0 - getProbabilityOfSuccess(),
|
||||
getNumberOfTrials() - x);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -34,27 +34,27 @@ package org.apache.commons.math.distribution;
|
|||
*/
|
||||
public interface CauchyDistribution extends ContinuousDistribution {
|
||||
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
double getMedian();
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
double getMedian();
|
||||
|
||||
/**
|
||||
* Access the scale parameter.
|
||||
* @return scale parameter for this distribution
|
||||
*/
|
||||
double getScale();
|
||||
/**
|
||||
* Access the scale parameter.
|
||||
* @return scale parameter for this distribution
|
||||
*/
|
||||
double getScale();
|
||||
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
void setMedian(double median);
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
void setMedian(double median);
|
||||
|
||||
/**
|
||||
* Modify the scale parameter.
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
void setScale(double s);
|
||||
/**
|
||||
* Modify the scale parameter.
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
void setScale(double s);
|
||||
}
|
||||
|
|
|
@ -26,60 +26,60 @@ import java.io.Serializable;
|
|||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
||||
implements CauchyDistribution, Serializable {
|
||||
implements CauchyDistribution, Serializable {
|
||||
|
||||
/** Serializable version identifier */
|
||||
static final long serialVersionUID = 8589540077390120676L;
|
||||
|
||||
/** The median of this distribution. */
|
||||
private double median = 0;
|
||||
private double median = 0;
|
||||
|
||||
/** The scale of this distribution. */
|
||||
private double scale = 1;
|
||||
private double scale = 1;
|
||||
|
||||
/**
|
||||
* Creates cauchy distribution with the medain equal to zero and scale
|
||||
* equal to one.
|
||||
*/
|
||||
public CauchyDistributionImpl(){
|
||||
this(0.0, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a cauchy distribution using the given median and scale.
|
||||
* @param median median for this distribution
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
public CauchyDistributionImpl(double median, double s){
|
||||
super();
|
||||
setMedian(median);
|
||||
setScale(s);
|
||||
}
|
||||
/**
|
||||
* Creates cauchy distribution with the medain equal to zero and scale
|
||||
* equal to one.
|
||||
*/
|
||||
public CauchyDistributionImpl(){
|
||||
this(0.0, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a cauchy distribution using the given median and scale.
|
||||
* @param median median for this distribution
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
public CauchyDistributionImpl(double median, double s){
|
||||
super();
|
||||
setMedian(median);
|
||||
setScale(s);
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X < <code>x</code>).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF evaluted at <code>x</code>.
|
||||
*/
|
||||
public double cumulativeProbability(double x) {
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X < <code>x</code>).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF evaluted at <code>x</code>.
|
||||
*/
|
||||
public double cumulativeProbability(double x) {
|
||||
return 0.5 + (Math.atan((x - median) / scale) / Math.PI);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
public double getMedian() {
|
||||
return median;
|
||||
}
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
public double getMedian() {
|
||||
return median;
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* Access the scale parameter.
|
||||
* @return scale parameter for this distribution
|
||||
*/
|
||||
public double getScale() {
|
||||
return scale;
|
||||
}
|
||||
*/
|
||||
public double getScale() {
|
||||
return scale;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point x, such
|
||||
|
@ -108,37 +108,37 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
public void setMedian(double median) {
|
||||
this.median = median;
|
||||
}
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
public void setMedian(double median) {
|
||||
this.median = median;
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* Modify the scale parameter.
|
||||
* @param s scale parameter for this distribution
|
||||
* @throws IllegalArgumentException if <code>sd</code> is not positive.
|
||||
*/
|
||||
public void setScale(double s) {
|
||||
if (s <= 0.0) {
|
||||
throw new IllegalArgumentException(
|
||||
*/
|
||||
public void setScale(double s) {
|
||||
if (s <= 0.0) {
|
||||
throw new IllegalArgumentException(
|
||||
"Scale must be positive.");
|
||||
}
|
||||
scale = s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value lower bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value lower bound, i.e.
|
||||
* P(X < <i>lower bound</i>) < <code>p</code>
|
||||
*/
|
||||
protected double getDomainLowerBound(double p) {
|
||||
}
|
||||
scale = s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value lower bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value lower bound, i.e.
|
||||
* P(X < <i>lower bound</i>) < <code>p</code>
|
||||
*/
|
||||
protected double getDomainLowerBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -150,16 +150,16 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value upper bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value upper bound, i.e.
|
||||
* P(X < <i>upper bound</i>) > <code>p</code>
|
||||
*/
|
||||
protected double getDomainUpperBound(double p) {
|
||||
/**
|
||||
* Access the domain value upper bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value upper bound, i.e.
|
||||
* P(X < <i>upper bound</i>) > <code>p</code>
|
||||
*/
|
||||
protected double getDomainUpperBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -171,15 +171,15 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the initial domain value, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return initial domain value
|
||||
*/
|
||||
protected double getInitialDomain(double p) {
|
||||
/**
|
||||
* Access the initial domain value, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return initial domain value
|
||||
*/
|
||||
protected double getInitialDomain(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -191,5 +191,5 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -154,24 +154,24 @@ public abstract class DistributionFactory {
|
|||
createHypergeometricDistribution(int populationSize,
|
||||
int numberOfSuccesses, int sampleSize);
|
||||
|
||||
/**
|
||||
* Create a new normal distribution with the given mean and standard
|
||||
* deviation.
|
||||
/**
|
||||
* Create a new normal distribution with the given mean and standard
|
||||
* deviation.
|
||||
*
|
||||
* @param mean the mean of the distribution
|
||||
* @param sd standard deviation
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
* @param mean the mean of the distribution
|
||||
* @param sd standard deviation
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
public abstract NormalDistribution
|
||||
createNormalDistribution(double mean, double sd);
|
||||
|
||||
/**
|
||||
* Create a new normal distribution with mean zero and standard
|
||||
* deviation one.
|
||||
createNormalDistribution(double mean, double sd);
|
||||
|
||||
/**
|
||||
* Create a new normal distribution with mean zero and standard
|
||||
* deviation one.
|
||||
*
|
||||
* @return a new normal distribution.
|
||||
*/
|
||||
public abstract NormalDistribution createNormalDistribution();
|
||||
* @return a new normal distribution.
|
||||
*/
|
||||
public abstract NormalDistribution createNormalDistribution();
|
||||
|
||||
/**
|
||||
* Create a new Poisson distribution with poisson parameter lambda.
|
||||
|
|
|
@ -118,27 +118,27 @@ public class DistributionFactoryImpl extends DistributionFactory {
|
|||
numberOfSuccesses, sampleSize);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new normal distribution with the given mean and standard
|
||||
* deviation.
|
||||
/**
|
||||
* Create a new normal distribution with the given mean and standard
|
||||
* deviation.
|
||||
*
|
||||
* @param mean the mean of the distribution
|
||||
* @param sd standard deviation
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
public NormalDistribution createNormalDistribution(double mean, double sd) {
|
||||
return new NormalDistributionImpl(mean, sd);
|
||||
}
|
||||
* @param mean the mean of the distribution
|
||||
* @param sd standard deviation
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
public NormalDistribution createNormalDistribution(double mean, double sd) {
|
||||
return new NormalDistributionImpl(mean, sd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new normal distribution with the mean zero and standard
|
||||
* deviation one.
|
||||
/**
|
||||
* Create a new normal distribution with the mean zero and standard
|
||||
* deviation one.
|
||||
*
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
public NormalDistribution createNormalDistribution() {
|
||||
return new NormalDistributionImpl();
|
||||
}
|
||||
* @return a new normal distribution
|
||||
*/
|
||||
public NormalDistribution createNormalDistribution() {
|
||||
return new NormalDistributionImpl();
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new Poisson distribution with poisson parameter lambda.
|
||||
|
|
|
@ -32,24 +32,24 @@ package org.apache.commons.math.distribution;
|
|||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public interface NormalDistribution extends ContinuousDistribution {
|
||||
/**
|
||||
* Access the mean.
|
||||
* @return mean for this distribution
|
||||
*/
|
||||
double getMean();
|
||||
/**
|
||||
* Modify the mean.
|
||||
* @param mean for this distribution
|
||||
*/
|
||||
void setMean(double mean);
|
||||
/**
|
||||
* Access the standard deviation.
|
||||
* @return standard deviation for this distribution
|
||||
*/
|
||||
double getStandardDeviation();
|
||||
/**
|
||||
* Modify the standard deviation.
|
||||
* @param sd standard deviation for this distribution
|
||||
*/
|
||||
void setStandardDeviation(double sd);
|
||||
/**
|
||||
* Access the mean.
|
||||
* @return mean for this distribution
|
||||
*/
|
||||
double getMean();
|
||||
/**
|
||||
* Modify the mean.
|
||||
* @param mean for this distribution
|
||||
*/
|
||||
void setMean(double mean);
|
||||
/**
|
||||
* Access the standard deviation.
|
||||
* @return standard deviation for this distribution
|
||||
*/
|
||||
double getStandardDeviation();
|
||||
/**
|
||||
* Modify the standard deviation.
|
||||
* @param sd standard deviation for this distribution
|
||||
*/
|
||||
void setStandardDeviation(double sd);
|
||||
}
|
||||
|
|
|
@ -28,83 +28,83 @@ import org.apache.commons.math.special.Erf;
|
|||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class NormalDistributionImpl extends AbstractContinuousDistribution
|
||||
implements NormalDistribution, Serializable {
|
||||
implements NormalDistribution, Serializable {
|
||||
|
||||
/** Serializable version identifier */
|
||||
static final long serialVersionUID = 8589540077390120676L;
|
||||
|
||||
/** The mean of this distribution. */
|
||||
private double mean = 0;
|
||||
private double mean = 0;
|
||||
|
||||
/** The standard deviation of this distribution. */
|
||||
private double standardDeviation = 1;
|
||||
|
||||
/**
|
||||
* Create a normal distribution using the given mean and standard deviation.
|
||||
* @param mean mean for this distribution
|
||||
* @param sd standard deviation for this distribution
|
||||
*/
|
||||
public NormalDistributionImpl(double mean, double sd){
|
||||
super();
|
||||
setMean(mean);
|
||||
setStandardDeviation(sd);
|
||||
}
|
||||
private double standardDeviation = 1;
|
||||
|
||||
/**
|
||||
* Creates normal distribution with the mean equal to zero and standard
|
||||
* deviation equal to one.
|
||||
*/
|
||||
public NormalDistributionImpl(){
|
||||
this(0.0, 1.0);
|
||||
}
|
||||
/**
|
||||
* Create a normal distribution using the given mean and standard deviation.
|
||||
* @param mean mean for this distribution
|
||||
* @param sd standard deviation for this distribution
|
||||
*/
|
||||
public NormalDistributionImpl(double mean, double sd){
|
||||
super();
|
||||
setMean(mean);
|
||||
setStandardDeviation(sd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the mean.
|
||||
* @return mean for this distribution
|
||||
*/
|
||||
public double getMean() {
|
||||
return mean;
|
||||
}
|
||||
/**
|
||||
* Creates normal distribution with the mean equal to zero and standard
|
||||
* deviation equal to one.
|
||||
*/
|
||||
public NormalDistributionImpl(){
|
||||
this(0.0, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the mean.
|
||||
* @param mean for this distribution
|
||||
*/
|
||||
public void setMean(double mean) {
|
||||
this.mean = mean;
|
||||
}
|
||||
/**
|
||||
* Access the mean.
|
||||
* @return mean for this distribution
|
||||
*/
|
||||
public double getMean() {
|
||||
return mean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the mean.
|
||||
* @param mean for this distribution
|
||||
*/
|
||||
public void setMean(double mean) {
|
||||
this.mean = mean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the standard deviation.
|
||||
* @return standard deviation for this distribution
|
||||
*/
|
||||
public double getStandardDeviation() {
|
||||
return standardDeviation;
|
||||
}
|
||||
/**
|
||||
* Access the standard deviation.
|
||||
* @return standard deviation for this distribution
|
||||
*/
|
||||
public double getStandardDeviation() {
|
||||
return standardDeviation;
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the standard deviation.
|
||||
* @param sd standard deviation for this distribution
|
||||
/**
|
||||
* Modify the standard deviation.
|
||||
* @param sd standard deviation for this distribution
|
||||
* @throws IllegalArgumentException if <code>sd</code> is not positive.
|
||||
*/
|
||||
public void setStandardDeviation(double sd) {
|
||||
if (sd <= 0.0) {
|
||||
throw new IllegalArgumentException(
|
||||
*/
|
||||
public void setStandardDeviation(double sd) {
|
||||
if (sd <= 0.0) {
|
||||
throw new IllegalArgumentException(
|
||||
"Standard deviation must be positive.");
|
||||
}
|
||||
standardDeviation = sd;
|
||||
}
|
||||
}
|
||||
standardDeviation = sd;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X < <code>x</code>).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF evaluted at <code>x</code>.
|
||||
* @throws MathException if the algorithm fails to converge.
|
||||
*/
|
||||
public double cumulativeProbability(double x) throws MathException {
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X < <code>x</code>).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF evaluted at <code>x</code>.
|
||||
* @throws MathException if the algorithm fails to converge.
|
||||
*/
|
||||
public double cumulativeProbability(double x) throws MathException {
|
||||
return 0.5 * (1.0 + Erf.erf((x - mean) /
|
||||
(standardDeviation * Math.sqrt(2.0))));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point x, such
|
||||
|
@ -130,17 +130,17 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
return super.inverseCumulativeProbability(p);
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value lower bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value lower bound, i.e.
|
||||
* P(X < <i>lower bound</i>) < <code>p</code>
|
||||
*/
|
||||
protected double getDomainLowerBound(double p) {
|
||||
|
||||
/**
|
||||
* Access the domain value lower bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value lower bound, i.e.
|
||||
* P(X < <i>lower bound</i>) < <code>p</code>
|
||||
*/
|
||||
protected double getDomainLowerBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -152,16 +152,16 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value upper bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value upper bound, i.e.
|
||||
* P(X < <i>upper bound</i>) > <code>p</code>
|
||||
*/
|
||||
protected double getDomainUpperBound(double p) {
|
||||
/**
|
||||
* Access the domain value upper bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value upper bound, i.e.
|
||||
* P(X < <i>upper bound</i>) > <code>p</code>
|
||||
*/
|
||||
protected double getDomainUpperBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -173,15 +173,15 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the initial domain value, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return initial domain value
|
||||
*/
|
||||
protected double getInitialDomain(double p) {
|
||||
/**
|
||||
* Access the initial domain value, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return initial domain value
|
||||
*/
|
||||
protected double getInitialDomain(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
|
@ -193,5 +193,5 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,6 +14,6 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Implementations of common discrete and continuous distributions.</body>
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Implementations of common discrete and continuous distributions.</body>
|
||||
</html>
|
||||
|
|
|
@ -84,7 +84,7 @@ public class FractionFormat extends Format implements Serializable {
|
|||
* @return A formatted fraction in proper form.
|
||||
*/
|
||||
public static String formatFraction(Fraction f) {
|
||||
return getImproperInstance().format(f);
|
||||
return getImproperInstance().format(f);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>
|
||||
Fraction number type and fraction number formatting.
|
||||
</body>
|
||||
|
|
|
@ -14,6 +14,6 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Common classes used throughout the commons-math library.</body>
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Common classes used throughout the commons-math library.</body>
|
||||
</html>
|
||||
|
|
|
@ -14,6 +14,6 @@
|
|||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Implementations of special functions such as Beta and Gamma.</body>
|
||||
<!-- $Revision$ $Date$ -->
|
||||
<body>Implementations of special functions such as Beta and Gamma.</body>
|
||||
</html>
|
||||
|
|
Loading…
Reference in New Issue