added new tests for multistart optimizers
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@795608 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
28bb294968
commit
56b70eb138
|
@ -0,0 +1,152 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.optimization;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import java.awt.geom.Point2D;
|
||||
import java.util.ArrayList;
|
||||
|
||||
import org.apache.commons.math.FunctionEvaluationException;
|
||||
import org.apache.commons.math.analysis.DifferentiableMultivariateRealFunction;
|
||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
||||
import org.apache.commons.math.analysis.MultivariateVectorialFunction;
|
||||
import org.apache.commons.math.analysis.solvers.BrentSolver;
|
||||
import org.apache.commons.math.optimization.general.ConjugateGradientFormula;
|
||||
import org.apache.commons.math.optimization.general.NonLinearConjugateGradientOptimizer;
|
||||
import org.apache.commons.math.random.GaussianRandomGenerator;
|
||||
import org.apache.commons.math.random.JDKRandomGenerator;
|
||||
import org.apache.commons.math.random.RandomVectorGenerator;
|
||||
import org.apache.commons.math.random.UncorrelatedRandomVectorGenerator;
|
||||
import org.junit.Test;
|
||||
|
||||
public class MultiStartDifferentiableMultivariateRealOptimizerTest {
|
||||
|
||||
@Test
|
||||
public void testCircleFitting() throws FunctionEvaluationException, OptimizationException {
|
||||
Circle circle = new Circle();
|
||||
circle.addPoint( 30.0, 68.0);
|
||||
circle.addPoint( 50.0, -6.0);
|
||||
circle.addPoint(110.0, -20.0);
|
||||
circle.addPoint( 35.0, 15.0);
|
||||
circle.addPoint( 45.0, 97.0);
|
||||
NonLinearConjugateGradientOptimizer underlying =
|
||||
new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE);
|
||||
JDKRandomGenerator g = new JDKRandomGenerator();
|
||||
g.setSeed(753289573253l);
|
||||
RandomVectorGenerator generator =
|
||||
new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 },
|
||||
new GaussianRandomGenerator(g));
|
||||
MultiStartDifferentiableMultivariateRealOptimizer optimizer =
|
||||
new MultiStartDifferentiableMultivariateRealOptimizer(underlying, 10, generator);
|
||||
optimizer.setMaxIterations(100);
|
||||
optimizer.setConvergenceChecker(new SimpleScalarValueChecker(1.0e-10, 1.0e-10));
|
||||
BrentSolver solver = new BrentSolver();
|
||||
solver.setAbsoluteAccuracy(1.0e-13);
|
||||
solver.setRelativeAccuracy(1.0e-15);
|
||||
RealPointValuePair optimum =
|
||||
optimizer.optimize(circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
|
||||
RealPointValuePair[] optima = optimizer.getOptima();
|
||||
for (RealPointValuePair o : optima) {
|
||||
Point2D.Double center = new Point2D.Double(o.getPointRef()[0], o.getPointRef()[1]);
|
||||
assertEquals(69.960161753, circle.getRadius(center), 1.0e-8);
|
||||
assertEquals(96.075902096, center.x, 1.0e-8);
|
||||
assertEquals(48.135167894, center.y, 1.0e-8);
|
||||
}
|
||||
assertTrue(optimizer.getEvaluations() > 70);
|
||||
assertTrue(optimizer.getEvaluations() < 90);
|
||||
assertEquals(3.1267527, optimum.getValue(), 1.0e-8);
|
||||
}
|
||||
|
||||
private static class Circle implements DifferentiableMultivariateRealFunction {
|
||||
|
||||
private ArrayList<Point2D.Double> points;
|
||||
|
||||
public Circle() {
|
||||
points = new ArrayList<Point2D.Double>();
|
||||
}
|
||||
|
||||
public void addPoint(double px, double py) {
|
||||
points.add(new Point2D.Double(px, py));
|
||||
}
|
||||
|
||||
public double getRadius(Point2D.Double center) {
|
||||
double r = 0;
|
||||
for (Point2D.Double point : points) {
|
||||
r += point.distance(center);
|
||||
}
|
||||
return r / points.size();
|
||||
}
|
||||
|
||||
private double[] gradient(double[] point) {
|
||||
|
||||
// optimal radius
|
||||
Point2D.Double center = new Point2D.Double(point[0], point[1]);
|
||||
double radius = getRadius(center);
|
||||
|
||||
// gradient of the sum of squared residuals
|
||||
double dJdX = 0;
|
||||
double dJdY = 0;
|
||||
for (Point2D.Double pk : points) {
|
||||
double dk = pk.distance(center);
|
||||
dJdX += (center.x - pk.x) * (dk - radius) / dk;
|
||||
dJdY += (center.y - pk.y) * (dk - radius) / dk;
|
||||
}
|
||||
dJdX *= 2;
|
||||
dJdY *= 2;
|
||||
|
||||
return new double[] { dJdX, dJdY };
|
||||
|
||||
}
|
||||
|
||||
public double value(double[] variables)
|
||||
throws IllegalArgumentException, FunctionEvaluationException {
|
||||
|
||||
Point2D.Double center = new Point2D.Double(variables[0], variables[1]);
|
||||
double radius = getRadius(center);
|
||||
|
||||
double sum = 0;
|
||||
for (Point2D.Double point : points) {
|
||||
double di = point.distance(center) - radius;
|
||||
sum += di * di;
|
||||
}
|
||||
|
||||
return sum;
|
||||
|
||||
}
|
||||
|
||||
public MultivariateVectorialFunction gradient() {
|
||||
return new MultivariateVectorialFunction() {
|
||||
public double[] value(double[] point) {
|
||||
return gradient(point);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public MultivariateRealFunction partialDerivative(final int k) {
|
||||
return new MultivariateRealFunction() {
|
||||
public double value(double[] point) {
|
||||
return gradient(point)[k];
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,52 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.optimization;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.analysis.SinFunction;
|
||||
import org.apache.commons.math.analysis.UnivariateRealFunction;
|
||||
import org.apache.commons.math.optimization.univariate.BrentOptimizer;
|
||||
import org.apache.commons.math.random.JDKRandomGenerator;
|
||||
import org.junit.Test;
|
||||
|
||||
public class MultiStartUnivariateRealOptimizerTest {
|
||||
|
||||
@Test
|
||||
public void testSinMin() throws MathException {
|
||||
UnivariateRealFunction f = new SinFunction();
|
||||
UnivariateRealOptimizer underlying = new BrentOptimizer();
|
||||
JDKRandomGenerator g = new JDKRandomGenerator();
|
||||
g.setSeed(44428400075l);
|
||||
MultiStartUnivariateRealOptimizer minimizer =
|
||||
new MultiStartUnivariateRealOptimizer(underlying, 10, g);
|
||||
minimizer.optimize(f, GoalType.MINIMIZE, -100.0, 100.0);
|
||||
double[] optima = minimizer.getOptima();
|
||||
for (int i = 1; i < optima.length; ++i) {
|
||||
double d = (optima[i] - optima[i-1]) / (2 * Math.PI);
|
||||
assertTrue (Math.abs(d - Math.rint(d)) < 1.0e-8);
|
||||
assertEquals(-1.0, f.value(optima[i]), 1.0e-10);
|
||||
}
|
||||
assertTrue(minimizer.getEvaluations() > 2900);
|
||||
assertTrue(minimizer.getEvaluations() < 3100);
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue