Final keyword.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1392358 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e055dcd21a
commit
57b0a07b9f
|
@ -175,7 +175,7 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
if (!this.hasIntercept) {
|
||||
include(MathArrays.copyOf(x, x.length), 1.0, y);
|
||||
} else {
|
||||
double[] tmp = new double[x.length + 1];
|
||||
final double[] tmp = new double[x.length + 1];
|
||||
System.arraycopy(x, 0, tmp, 1, x.length);
|
||||
tmp[0] = 1.0;
|
||||
include(tmp, 1.0, y);
|
||||
|
@ -254,7 +254,7 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
_w = w;
|
||||
if (di != 0.0) {
|
||||
dpi = smartAdd(di, wxi * xi);
|
||||
double tmp = wxi * xi / di;
|
||||
final double tmp = wxi * xi / di;
|
||||
if (FastMath.abs(tmp) > Precision.EPSILON) {
|
||||
w = (di * w) / dpi;
|
||||
}
|
||||
|
@ -292,16 +292,16 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
* @return the sum of the a and b
|
||||
*/
|
||||
private double smartAdd(double a, double b) {
|
||||
double _a = FastMath.abs(a);
|
||||
double _b = FastMath.abs(b);
|
||||
final double _a = FastMath.abs(a);
|
||||
final double _b = FastMath.abs(b);
|
||||
if (_a > _b) {
|
||||
double eps = _a * Precision.EPSILON;
|
||||
final double eps = _a * Precision.EPSILON;
|
||||
if (_b > eps) {
|
||||
return a + b;
|
||||
}
|
||||
return a;
|
||||
} else {
|
||||
double eps = _b * Precision.EPSILON;
|
||||
final double eps = _b * Precision.EPSILON;
|
||||
if (_a > eps) {
|
||||
return a + b;
|
||||
}
|
||||
|
@ -380,7 +380,7 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
if (!this.tol_set) {
|
||||
tolset();
|
||||
}
|
||||
double[] ret = new double[nreq];
|
||||
final double[] ret = new double[nreq];
|
||||
boolean rankProblem = false;
|
||||
for (int i = nreq - 1; i > -1; i--) {
|
||||
if (Math.sqrt(d[i]) < tol[i]) {
|
||||
|
@ -411,9 +411,6 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
* columns.
|
||||
*/
|
||||
private void singcheck() {
|
||||
double temp;
|
||||
double y;
|
||||
double weight;
|
||||
int pos;
|
||||
for (int i = 0; i < nvars; i++) {
|
||||
work_sing[i] = Math.sqrt(d[i]);
|
||||
|
@ -422,7 +419,7 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
// Set elements within R to zero if they are less than tol(col) in
|
||||
// absolute value after being scaled by the square root of their row
|
||||
// multiplier
|
||||
temp = tol[col];
|
||||
final double temp = tol[col];
|
||||
pos = col - 1;
|
||||
for (int row = 0; row < col - 1; row++) {
|
||||
if (Math.abs(r[pos]) * work_sing[row] < temp) {
|
||||
|
@ -443,8 +440,8 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
x_sing[_xi] = r[_pi];
|
||||
r[_pi] = 0.0;
|
||||
}
|
||||
y = rhs[col];
|
||||
weight = d[col];
|
||||
final double y = rhs[col];
|
||||
final double weight = d[col];
|
||||
d[col] = 0.0;
|
||||
rhs[col] = 0.0;
|
||||
this.include(x_sing, weight, y);
|
||||
|
@ -502,10 +499,10 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
rnk += 1.0;
|
||||
}
|
||||
}
|
||||
double var = rss[nreq - 1] / (nobs - rnk);
|
||||
double[] rinv = new double[nreq * (nreq - 1) / 2];
|
||||
final double var = rss[nreq - 1] / (nobs - rnk);
|
||||
final double[] rinv = new double[nreq * (nreq - 1) / 2];
|
||||
inverse(rinv, nreq);
|
||||
double[] covmat = new double[nreq * (nreq + 1) / 2];
|
||||
final double[] covmat = new double[nreq * (nreq + 1) / 2];
|
||||
Arrays.fill(covmat, Double.NaN);
|
||||
int pos2;
|
||||
int pos1;
|
||||
|
@ -552,11 +549,10 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
int pos1 = -1;
|
||||
int pos2 = -1;
|
||||
double total = 0.0;
|
||||
int start;
|
||||
Arrays.fill(rinv, Double.NaN);
|
||||
for (int row = nreq - 1; row > 0; --row) {
|
||||
if (!this.lindep[row]) {
|
||||
start = (row - 1) * (nvars + nvars - row) / 2;
|
||||
final int start = (row - 1) * (nvars + nvars - row) / 2;
|
||||
for (int col = nreq; col > row; --col) {
|
||||
pos1 = start;
|
||||
pos2 = pos;
|
||||
|
@ -611,24 +607,23 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
* regressors with each other and the regressand, in lower triangular form
|
||||
*/
|
||||
public double[] getPartialCorrelations(int in) {
|
||||
double[] output = new double[(nvars - in + 1) * (nvars - in) / 2];
|
||||
int base_pos;
|
||||
final double[] output = new double[(nvars - in + 1) * (nvars - in) / 2];
|
||||
int pos;
|
||||
int pos1;
|
||||
int pos2;
|
||||
int rms_off = -in;
|
||||
int wrk_off = -(in + 1);
|
||||
double[] rms = new double[nvars - in];
|
||||
double[] work = new double[nvars - in - 1];
|
||||
final int rms_off = -in;
|
||||
final int wrk_off = -(in + 1);
|
||||
final double[] rms = new double[nvars - in];
|
||||
final double[] work = new double[nvars - in - 1];
|
||||
double sumxx;
|
||||
double sumxy;
|
||||
double sumyy;
|
||||
int offXX = (nvars - in) * (nvars - in - 1) / 2;
|
||||
final int offXX = (nvars - in) * (nvars - in - 1) / 2;
|
||||
if (in < -1 || in >= nvars) {
|
||||
return null;
|
||||
}
|
||||
int nvm = nvars - 1;
|
||||
base_pos = r.length - (nvm - in) * (nvm - in + 1) / 2;
|
||||
final int nvm = nvars - 1;
|
||||
final int base_pos = r.length - (nvm - in) * (nvm - in + 1) / 2;
|
||||
if (d[in] > 0.0) {
|
||||
rms[in + rms_off] = 1.0 / Math.sqrt(d[in]);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue