diff --git a/src/main/java/org/apache/commons/math4/complex/Complex.java b/src/main/java/org/apache/commons/math4/complex/Complex.java deleted file mode 100644 index f28339757..000000000 --- a/src/main/java/org/apache/commons/math4/complex/Complex.java +++ /dev/null @@ -1,1308 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math4.complex; - -import java.io.Serializable; -import java.util.ArrayList; -import java.util.List; - -import org.apache.commons.math4.FieldElement; -import org.apache.commons.math4.exception.NotPositiveException; -import org.apache.commons.math4.exception.NullArgumentException; -import org.apache.commons.math4.exception.util.LocalizedFormats; -import org.apache.commons.math4.util.FastMath; -import org.apache.commons.math4.util.MathUtils; -import org.apache.commons.numbers.core.Precision; - -/** - * Representation of a Complex number, i.e. a number which has both a - * real and imaginary part. - *

- * Implementations of arithmetic operations handle {@code NaN} and - * infinite values according to the rules for {@link java.lang.Double}, i.e. - * {@link #equals} is an equivalence relation for all instances that have - * a {@code NaN} in either real or imaginary part, e.g. the following are - * considered equal: - *

- * Note that this contradicts the IEEE-754 standard for floating - * point numbers (according to which the test {@code x == x} must fail if - * {@code x} is {@code NaN}). The method - * {@link org.apache.commons.numbers.core.Precision#equals(double,double,int) - * equals for primitive double} in {@link org.apache.commons.numbers.core.Precision} - * conforms with IEEE-754 while this class conforms with the standard behavior - * for Java object types.

- * - */ -public class Complex implements FieldElement, Serializable { - /** The square root of -1. A number representing "0.0 + 1.0i" */ - public static final Complex I = new Complex(0.0, 1.0); - // CHECKSTYLE: stop ConstantName - /** A complex number representing "NaN + NaNi" */ - public static final Complex NaN = new Complex(Double.NaN, Double.NaN); - // CHECKSTYLE: resume ConstantName - /** A complex number representing "+INF + INFi" */ - public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); - /** A complex number representing "1.0 + 0.0i" */ - public static final Complex ONE = new Complex(1.0, 0.0); - /** A complex number representing "0.0 + 0.0i" */ - public static final Complex ZERO = new Complex(0.0, 0.0); - - /** Serializable version identifier */ - private static final long serialVersionUID = -6195664516687396620L; - - /** The imaginary part. */ - private final double imaginary; - /** The real part. */ - private final double real; - /** Record whether this complex number is equal to NaN. */ - private final transient boolean isNaN; - /** Record whether this complex number is infinite. */ - private final transient boolean isInfinite; - - /** - * Create a complex number given only the real part. - * - * @param real Real part. - */ - public Complex(double real) { - this(real, 0.0); - } - - /** - * Create a complex number given the real and imaginary parts. - * - * @param real Real part. - * @param imaginary Imaginary part. - */ - public Complex(double real, double imaginary) { - this.real = real; - this.imaginary = imaginary; - - isNaN = Double.isNaN(real) || Double.isNaN(imaginary); - isInfinite = !isNaN && - (Double.isInfinite(real) || Double.isInfinite(imaginary)); - } - - /** - * Return the absolute value of this complex number. - * Returns {@code NaN} if either real or imaginary part is {@code NaN} - * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN}, - * but at least one part is infinite. - * - * @return the absolute value. - */ - public double abs() { - if (isNaN) { - return Double.NaN; - } - if (isInfinite()) { - return Double.POSITIVE_INFINITY; - } - if (FastMath.abs(real) < FastMath.abs(imaginary)) { - if (imaginary == 0.0) { - return FastMath.abs(real); - } - double q = real / imaginary; - return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q); - } else { - if (real == 0.0) { - return FastMath.abs(imaginary); - } - double q = imaginary / real; - return FastMath.abs(real) * FastMath.sqrt(1 + q * q); - } - } - - /** - * Returns a {@code Complex} whose value is - * {@code (this + addend)}. - * Uses the definitional formula - *

- * {@code (a + bi) + (c + di) = (a+c) + (b+d)i} - *

- * If either {@code this} or {@code addend} has a {@code NaN} value in - * either part, {@link #NaN} is returned; otherwise {@code Infinite} - * and {@code NaN} values are returned in the parts of the result - * according to the rules for {@link java.lang.Double} arithmetic. - * - * @param addend Value to be added to this {@code Complex}. - * @return {@code this + addend}. - * @throws NullArgumentException if {@code addend} is {@code null}. - */ - @Override - public Complex add(Complex addend) throws NullArgumentException { - MathUtils.checkNotNull(addend); - if (isNaN || addend.isNaN) { - return NaN; - } - - return createComplex(real + addend.getReal(), - imaginary + addend.getImaginary()); - } - - /** - * Returns a {@code Complex} whose value is {@code (this + addend)}, - * with {@code addend} interpreted as a real number. - * - * @param addend Value to be added to this {@code Complex}. - * @return {@code this + addend}. - * @see #add(Complex) - */ - public Complex add(double addend) { - if (isNaN || Double.isNaN(addend)) { - return NaN; - } - - return createComplex(real + addend, imaginary); - } - - /** - * Returns the conjugate of this complex number. - * The conjugate of {@code a + bi} is {@code a - bi}. - *

- * {@link #NaN} is returned if either the real or imaginary - * part of this Complex number equals {@code Double.NaN}. - *

- * If the imaginary part is infinite, and the real part is not - * {@code NaN}, the returned value has infinite imaginary part - * of the opposite sign, e.g. the conjugate of - * {@code 1 + POSITIVE_INFINITY i} is {@code 1 - NEGATIVE_INFINITY i}. - *

- * @return the conjugate of this Complex object. - */ - public Complex conjugate() { - if (isNaN) { - return NaN; - } - - return createComplex(real, -imaginary); - } - - /** - * Returns a {@code Complex} whose value is - * {@code (this / divisor)}. - * Implements the definitional formula - *
-     *  
-     *    a + bi          ac + bd + (bc - ad)i
-     *    ----------- = -------------------------
-     *    c + di         c2 + d2
-     *  
-     * 
- * but uses - * - * prescaling of operands to limit the effects of overflows and - * underflows in the computation. - *

- * {@code Infinite} and {@code NaN} values are handled according to the - * following rules, applied in the order presented: - *

- * - * @param divisor Value by which this {@code Complex} is to be divided. - * @return {@code this / divisor}. - * @throws NullArgumentException if {@code divisor} is {@code null}. - */ - @Override - public Complex divide(Complex divisor) - throws NullArgumentException { - MathUtils.checkNotNull(divisor); - if (isNaN || divisor.isNaN) { - return NaN; - } - - final double c = divisor.getReal(); - final double d = divisor.getImaginary(); - if (c == 0.0 && d == 0.0) { - return NaN; - } - - if (divisor.isInfinite() && !isInfinite()) { - return ZERO; - } - - if (FastMath.abs(c) < FastMath.abs(d)) { - double q = c / d; - double denominator = c * q + d; - return createComplex((real * q + imaginary) / denominator, - (imaginary * q - real) / denominator); - } else { - double q = d / c; - double denominator = d * q + c; - return createComplex((imaginary * q + real) / denominator, - (imaginary - real * q) / denominator); - } - } - - /** - * Returns a {@code Complex} whose value is {@code (this / divisor)}, - * with {@code divisor} interpreted as a real number. - * - * @param divisor Value by which this {@code Complex} is to be divided. - * @return {@code this / divisor}. - * @see #divide(Complex) - */ - public Complex divide(double divisor) { - if (isNaN || Double.isNaN(divisor)) { - return NaN; - } - if (divisor == 0d) { - return NaN; - } - if (Double.isInfinite(divisor)) { - return !isInfinite() ? ZERO : NaN; - } - return createComplex(real / divisor, - imaginary / divisor); - } - - /** {@inheritDoc} */ - @Override - public Complex reciprocal() { - if (isNaN) { - return NaN; - } - - if (real == 0.0 && imaginary == 0.0) { - return INF; - } - - if (isInfinite) { - return ZERO; - } - - if (FastMath.abs(real) < FastMath.abs(imaginary)) { - double q = real / imaginary; - double scale = 1. / (real * q + imaginary); - return createComplex(scale * q, -scale); - } else { - double q = imaginary / real; - double scale = 1. / (imaginary * q + real); - return createComplex(scale, -scale * q); - } - } - - /** - * Test for equality with another object. - * If both the real and imaginary parts of two complex numbers - * are exactly the same, and neither is {@code Double.NaN}, the two - * Complex objects are considered to be equal. - * The behavior is the same as for JDK's {@link Double#equals(Object) - * Double}: - * - * - * @param other Object to test for equality with this instance. - * @return {@code true} if the objects are equal, {@code false} if object - * is {@code null}, not an instance of {@code Complex}, or not equal to - * this instance. - */ - @Override - public boolean equals(Object other) { - if (this == other) { - return true; - } - if (other instanceof Complex){ - Complex c = (Complex) other; - if (c.isNaN) { - return isNaN; - } else { - return MathUtils.equals(real, c.real) && - MathUtils.equals(imaginary, c.imaginary); - } - } - return false; - } - - /** - * Test for the floating-point equality between Complex objects. - * It returns {@code true} if both arguments are equal or within the - * range of allowed error (inclusive). - * - * @param x First value (cannot be {@code null}). - * @param y Second value (cannot be {@code null}). - * @param maxUlps {@code (maxUlps - 1)} is the number of floating point - * values between the real (resp. imaginary) parts of {@code x} and - * {@code y}. - * @return {@code true} if there are fewer than {@code maxUlps} floating - * point values between the real (resp. imaginary) parts of {@code x} - * and {@code y}. - * - * @see Precision#equals(double,double,int) - * @since 3.3 - */ - public static boolean equals(Complex x, Complex y, int maxUlps) { - return Precision.equals(x.real, y.real, maxUlps) && - Precision.equals(x.imaginary, y.imaginary, maxUlps); - } - - /** - * Returns {@code true} iff the values are equal as defined by - * {@link #equals(Complex,Complex,int) equals(x, y, 1)}. - * - * @param x First value (cannot be {@code null}). - * @param y Second value (cannot be {@code null}). - * @return {@code true} if the values are equal. - * - * @since 3.3 - */ - public static boolean equals(Complex x, Complex y) { - return equals(x, y, 1); - } - - /** - * Returns {@code true} if, both for the real part and for the imaginary - * part, there is no double value strictly between the arguments or the - * difference between them is within the range of allowed error - * (inclusive). Returns {@code false} if either of the arguments is NaN. - * - * @param x First value (cannot be {@code null}). - * @param y Second value (cannot be {@code null}). - * @param eps Amount of allowed absolute error. - * @return {@code true} if the values are two adjacent floating point - * numbers or they are within range of each other. - * - * @see Precision#equals(double,double,double) - * @since 3.3 - */ - public static boolean equals(Complex x, Complex y, double eps) { - return Precision.equals(x.real, y.real, eps) && - Precision.equals(x.imaginary, y.imaginary, eps); - } - - /** - * Returns {@code true} if, both for the real part and for the imaginary - * part, there is no double value strictly between the arguments or the - * relative difference between them is smaller or equal to the given - * tolerance. Returns {@code false} if either of the arguments is NaN. - * - * @param x First value (cannot be {@code null}). - * @param y Second value (cannot be {@code null}). - * @param eps Amount of allowed relative error. - * @return {@code true} if the values are two adjacent floating point - * numbers or they are within range of each other. - * - * @see Precision#equalsWithRelativeTolerance(double,double,double) - * @since 3.3 - */ - public static boolean equalsWithRelativeTolerance(Complex x, Complex y, - double eps) { - return Precision.equalsWithRelativeTolerance(x.real, y.real, eps) && - Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, eps); - } - - /** - * Get a hashCode for the complex number. - * Any {@code Double.NaN} value in real or imaginary part produces - * the same hash code {@code 7}. - * - * @return a hash code value for this object. - */ - @Override - public int hashCode() { - if (isNaN) { - return 7; - } - return 37 * (17 * MathUtils.hash(imaginary) + - MathUtils.hash(real)); - } - - /** - * Access the imaginary part. - * - * @return the imaginary part. - */ - public double getImaginary() { - return imaginary; - } - - /** - * Access the real part. - * - * @return the real part. - */ - public double getReal() { - return real; - } - - /** - * Checks whether either or both parts of this complex number is - * {@code NaN}. - * - * @return true if either or both parts of this complex number is - * {@code NaN}; false otherwise. - */ - public boolean isNaN() { - return isNaN; - } - - /** - * Checks whether either the real or imaginary part of this complex number - * takes an infinite value (either {@code Double.POSITIVE_INFINITY} or - * {@code Double.NEGATIVE_INFINITY}) and neither part - * is {@code NaN}. - * - * @return true if one or both parts of this complex number are infinite - * and neither part is {@code NaN}. - */ - public boolean isInfinite() { - return isInfinite; - } - - /** - * Returns a {@code Complex} whose value is {@code this * factor}. - * Implements preliminary checks for {@code NaN} and infinity followed by - * the definitional formula: - *

- * {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i} - *

- * Returns {@link #NaN} if either {@code this} or {@code factor} has one or - * more {@code NaN} parts. - *

- * Returns {@link #INF} if neither {@code this} nor {@code factor} has one - * or more {@code NaN} parts and if either {@code this} or {@code factor} - * has one or more infinite parts (same result is returned regardless of - * the sign of the components). - *

- * Returns finite values in components of the result per the definitional - * formula in all remaining cases.

- * - * @param factor value to be multiplied by this {@code Complex}. - * @return {@code this * factor}. - * @throws NullArgumentException if {@code factor} is {@code null}. - */ - @Override - public Complex multiply(Complex factor) - throws NullArgumentException { - MathUtils.checkNotNull(factor); - if (isNaN || factor.isNaN) { - return NaN; - } - if (Double.isInfinite(real) || - Double.isInfinite(imaginary) || - Double.isInfinite(factor.real) || - Double.isInfinite(factor.imaginary)) { - // we don't use isInfinite() to avoid testing for NaN again - return INF; - } - return createComplex(real * factor.real - imaginary * factor.imaginary, - real * factor.imaginary + imaginary * factor.real); - } - - /** - * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} - * interpreted as a integer number. - * - * @param factor value to be multiplied by this {@code Complex}. - * @return {@code this * factor}. - * @see #multiply(Complex) - */ - @Override - public Complex multiply(final int factor) { - if (isNaN) { - return NaN; - } - if (Double.isInfinite(real) || - Double.isInfinite(imaginary)) { - return INF; - } - return createComplex(real * factor, imaginary * factor); - } - - /** - * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} - * interpreted as a real number. - * - * @param factor value to be multiplied by this {@code Complex}. - * @return {@code this * factor}. - * @see #multiply(Complex) - */ - public Complex multiply(double factor) { - if (isNaN || Double.isNaN(factor)) { - return NaN; - } - if (Double.isInfinite(real) || - Double.isInfinite(imaginary) || - Double.isInfinite(factor)) { - // we don't use isInfinite() to avoid testing for NaN again - return INF; - } - return createComplex(real * factor, imaginary * factor); - } - - /** - * Returns a {@code Complex} whose value is {@code (-this)}. - * Returns {@code NaN} if either real or imaginary - * part of this Complex number is {@code Double.NaN}. - * - * @return {@code -this}. - */ - @Override - public Complex negate() { - if (isNaN) { - return NaN; - } - - return createComplex(-real, -imaginary); - } - - /** - * Returns a {@code Complex} whose value is - * {@code (this - subtrahend)}. - * Uses the definitional formula - *

- * {@code (a + bi) - (c + di) = (a-c) + (b-d)i} - *

- * If either {@code this} or {@code subtrahend} has a {@code NaN]} value in either part, - * {@link #NaN} is returned; otherwise infinite and {@code NaN} values are - * returned in the parts of the result according to the rules for - * {@link java.lang.Double} arithmetic. - * - * @param subtrahend value to be subtracted from this {@code Complex}. - * @return {@code this - subtrahend}. - * @throws NullArgumentException if {@code subtrahend} is {@code null}. - */ - @Override - public Complex subtract(Complex subtrahend) - throws NullArgumentException { - MathUtils.checkNotNull(subtrahend); - if (isNaN || subtrahend.isNaN) { - return NaN; - } - - return createComplex(real - subtrahend.getReal(), - imaginary - subtrahend.getImaginary()); - } - - /** - * Returns a {@code Complex} whose value is - * {@code (this - subtrahend)}. - * - * @param subtrahend value to be subtracted from this {@code Complex}. - * @return {@code this - subtrahend}. - * @see #subtract(Complex) - */ - public Complex subtract(double subtrahend) { - if (isNaN || Double.isNaN(subtrahend)) { - return NaN; - } - return createComplex(real - subtrahend, imaginary); - } - - /** - * Compute the - * - * inverse cosine of this complex number. - * Implements the formula: - *

- * {@code acos(z) = -i (log(z + i (sqrt(1 - z2))))} - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN} or infinite. - * - * @return the inverse cosine of this complex number. - * @since 1.2 - */ - public Complex acos() { - if (isNaN) { - return NaN; - } - - return this.add(this.sqrt1z().multiply(I)).log().multiply(I.negate()); - } - - /** - * Compute the - * - * inverse sine of this complex number. - * Implements the formula: - *

- * {@code asin(z) = -i (log(sqrt(1 - z2) + iz))} - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN} or infinite.

- * - * @return the inverse sine of this complex number. - * @since 1.2 - */ - public Complex asin() { - if (isNaN) { - return NaN; - } - - return sqrt1z().add(this.multiply(I)).log().multiply(I.negate()); - } - - /** - * Compute the - * - * inverse tangent of this complex number. - * Implements the formula: - *

- * {@code atan(z) = (i/2) log((i + z)/(i - z))} - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN} or infinite.

- * - * @return the inverse tangent of this complex number - * @since 1.2 - */ - public Complex atan() { - if (isNaN) { - return NaN; - } - - return this.add(I).divide(I.subtract(this)).log() - .multiply(I.divide(createComplex(2.0, 0.0))); - } - - /** - * Compute the - * - * cosine of this complex number. - * Implements the formula: - *

- * {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i} - *

- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, - * {@link FastMath#cosh} and {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result.

- *
-     *  Examples:
-     *  
-     *   cos(1 ± INFINITY i) = 1 \u2213 INFINITY i
-     *   cos(±INFINITY + i) = NaN + NaN i
-     *   cos(±INFINITY ± INFINITY i) = NaN + NaN i
-     *  
-     * 
- * - * @return the cosine of this complex number. - * @since 1.2 - */ - public Complex cos() { - if (isNaN) { - return NaN; - } - - return createComplex(FastMath.cos(real) * FastMath.cosh(imaginary), - -FastMath.sin(real) * FastMath.sinh(imaginary)); - } - - /** - * Compute the - * - * hyperbolic cosine of this complex number. - * Implements the formula: - *
-     *  
-     *   cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, - * {@link FastMath#cosh} and {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   cosh(1 ± INFINITY i) = NaN + NaN i
-     *   cosh(±INFINITY + i) = INFINITY ± INFINITY i
-     *   cosh(±INFINITY ± INFINITY i) = NaN + NaN i
-     *  
-     * 
- * - * @return the hyperbolic cosine of this complex number. - * @since 1.2 - */ - public Complex cosh() { - if (isNaN) { - return NaN; - } - - return createComplex(FastMath.cosh(real) * FastMath.cos(imaginary), - FastMath.sinh(real) * FastMath.sin(imaginary)); - } - - /** - * Compute the - * - * exponential function of this complex number. - * Implements the formula: - *
-     *  
-     *   exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#exp}, {@link FastMath#cos}, and - * {@link FastMath#sin}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   exp(1 ± INFINITY i) = NaN + NaN i
-     *   exp(INFINITY + i) = INFINITY + INFINITY i
-     *   exp(-INFINITY + i) = 0 + 0i
-     *   exp(±INFINITY ± INFINITY i) = NaN + NaN i
-     *  
-     * 
- * - * @return ethis. - * @since 1.2 - */ - public Complex exp() { - if (isNaN) { - return NaN; - } - - double expReal = FastMath.exp(real); - return createComplex(expReal * FastMath.cos(imaginary), - expReal * FastMath.sin(imaginary)); - } - - /** - * Compute the - * - * natural logarithm of this complex number. - * Implements the formula: - *
-     *  
-     *   log(a + bi) = ln(|a + bi|) + arg(a + bi)i
-     *  
-     * 
- * where ln on the right hand side is {@link FastMath#log}, - * {@code |a + bi|} is the modulus, {@link Complex#abs}, and - * {@code arg(a + bi) = }{@link FastMath#atan2}(b, a). - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite (or critical) values in real or imaginary parts of the input may - * result in infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   log(1 ± INFINITY i) = INFINITY ± (π/2)i
-     *   log(INFINITY + i) = INFINITY + 0i
-     *   log(-INFINITY + i) = INFINITY + πi
-     *   log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
-     *   log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
-     *   log(0 + 0i) = -INFINITY + 0i
-     *  
-     * 
- * - * @return the value ln   this, the natural logarithm - * of {@code this}. - * @since 1.2 - */ - public Complex log() { - if (isNaN) { - return NaN; - } - - return createComplex(FastMath.log(abs()), - FastMath.atan2(imaginary, real)); - } - - /** - * Returns of value of this complex number raised to the power of {@code x}. - * Implements the formula: - *
-     *  
-     *   yx = exp(x·log(y))
-     *  
-     * 
- * where {@code exp} and {@code log} are {@link #exp} and - * {@link #log}, respectively. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN} or infinite, or if {@code y} - * equals {@link Complex#ZERO}.

- * - * @param x exponent to which this {@code Complex} is to be raised. - * @return thisx. - * @throws NullArgumentException if x is {@code null}. - * @since 1.2 - */ - public Complex pow(Complex x) - throws NullArgumentException { - MathUtils.checkNotNull(x); - return this.log().multiply(x).exp(); - } - - /** - * Returns of value of this complex number raised to the power of {@code x}. - * - * @param x exponent to which this {@code Complex} is to be raised. - * @return thisx. - * @see #pow(Complex) - */ - public Complex pow(double x) { - return this.log().multiply(x).exp(); - } - - /** - * Compute the - * - * sine - * of this complex number. - * Implements the formula: - *
-     *  
-     *   sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, - * {@link FastMath#cosh} and {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or {@code NaN} values returned in parts of the result. - *

-     *  Examples:
-     *  
-     *   sin(1 ± INFINITY i) = 1 ± INFINITY i
-     *   sin(±INFINITY + i) = NaN + NaN i
-     *   sin(±INFINITY ± INFINITY i) = NaN + NaN i
-     *  
-     * 
- * - * @return the sine of this complex number. - * @since 1.2 - */ - public Complex sin() { - if (isNaN) { - return NaN; - } - - return createComplex(FastMath.sin(real) * FastMath.cosh(imaginary), - FastMath.cos(real) * FastMath.sinh(imaginary)); - } - - /** - * Compute the - * - * hyperbolic sine of this complex number. - * Implements the formula: - *
-     *  
-     *   sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, - * {@link FastMath#cosh} and {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - *

-     *  Examples:
-     *  
-     *   sinh(1 ± INFINITY i) = NaN + NaN i
-     *   sinh(±INFINITY + i) = ± INFINITY + INFINITY i
-     *   sinh(±INFINITY ± INFINITY i) = NaN + NaN i
-     *  
-     * 
- * - * @return the hyperbolic sine of {@code this}. - * @since 1.2 - */ - public Complex sinh() { - if (isNaN) { - return NaN; - } - - return createComplex(FastMath.sinh(real) * FastMath.cos(imaginary), - FastMath.cosh(real) * FastMath.sin(imaginary)); - } - - /** - * Compute the - * - * square root of this complex number. - * Implements the following algorithm to compute {@code sqrt(a + bi)}: - *
  1. Let {@code t = sqrt((|a| + |a + bi|) / 2)}
  2. - *
  3. if {@code  a ≥ 0} return {@code t + (b/2t)i}
    -     *  else return {@code |b|/2t + sign(b)t i }
  4. - *
- * where - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   sqrt(1 ± INFINITY i) = INFINITY + NaN i
-     *   sqrt(INFINITY + i) = INFINITY + 0i
-     *   sqrt(-INFINITY + i) = 0 + INFINITY i
-     *   sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
-     *   sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
-     *  
-     * 
- * - * @return the square root of {@code this}. - * @since 1.2 - */ - public Complex sqrt() { - if (isNaN) { - return NaN; - } - - if (real == 0.0 && imaginary == 0.0) { - return createComplex(0.0, 0.0); - } - - double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0); - if (real >= 0.0) { - return createComplex(t, imaginary / (2.0 * t)); - } else { - return createComplex(FastMath.abs(imaginary) / (2.0 * t), - FastMath.copySign(1d, imaginary) * t); - } - } - - /** - * Compute the - * - * square root of 1 - this2 for this complex - * number. - * Computes the result directly as - * {@code sqrt(ONE.subtract(z.multiply(z)))}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - * - * @return the square root of 1 - this2. - * @since 1.2 - */ - public Complex sqrt1z() { - return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt(); - } - - /** - * Compute the - * - * tangent of this complex number. - * Implements the formula: - *
-     *  
-     *   tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and - * {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite (or critical) values in real or imaginary parts of the input may - * result in infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   tan(a ± INFINITY i) = 0 ± i
-     *   tan(±INFINITY + bi) = NaN + NaN i
-     *   tan(±INFINITY ± INFINITY i) = NaN + NaN i
-     *   tan(±π/2 + 0 i) = ±INFINITY + NaN i
-     *  
-     * 
- * - * @return the tangent of {@code this}. - * @since 1.2 - */ - public Complex tan() { - if (isNaN || Double.isInfinite(real)) { - return NaN; - } - if (imaginary > 20.0) { - return createComplex(0.0, 1.0); - } - if (imaginary < -20.0) { - return createComplex(0.0, -1.0); - } - - double real2 = 2.0 * real; - double imaginary2 = 2.0 * imaginary; - double d = FastMath.cos(real2) + FastMath.cosh(imaginary2); - - return createComplex(FastMath.sin(real2) / d, - FastMath.sinh(imaginary2) / d); - } - - /** - * Compute the - * - * hyperbolic tangent of this complex number. - * Implements the formula: - *
-     *  
-     *   tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
-     *  
-     * 
- * where the (real) functions on the right-hand side are - * {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and - * {@link FastMath#sinh}. - *

- * Returns {@link Complex#NaN} if either real or imaginary part of the - * input argument is {@code NaN}. - *

- * Infinite values in real or imaginary parts of the input may result in - * infinite or NaN values returned in parts of the result. - *
-     *  Examples:
-     *  
-     *   tanh(a ± INFINITY i) = NaN + NaN i
-     *   tanh(±INFINITY + bi) = ±1 + 0 i
-     *   tanh(±INFINITY ± INFINITY i) = NaN + NaN i
-     *   tanh(0 + (π/2)i) = NaN + INFINITY i
-     *  
-     * 
- * - * @return the hyperbolic tangent of {@code this}. - * @since 1.2 - */ - public Complex tanh() { - if (isNaN || Double.isInfinite(imaginary)) { - return NaN; - } - if (real > 20.0) { - return createComplex(1.0, 0.0); - } - if (real < -20.0) { - return createComplex(-1.0, 0.0); - } - double real2 = 2.0 * real; - double imaginary2 = 2.0 * imaginary; - double d = FastMath.cosh(real2) + FastMath.cos(imaginary2); - - return createComplex(FastMath.sinh(real2) / d, - FastMath.sin(imaginary2) / d); - } - - - - /** - * Compute the argument of this complex number. - * The argument is the angle phi between the positive real axis and - * the point representing this number in the complex plane. - * The value returned is between -PI (not inclusive) - * and PI (inclusive), with negative values returned for numbers with - * negative imaginary parts. - *

- * If either real or imaginary part (or both) is NaN, NaN is returned. - * Infinite parts are handled as {@code Math.atan2} handles them, - * essentially treating finite parts as zero in the presence of an - * infinite coordinate and returning a multiple of pi/4 depending on - * the signs of the infinite parts. - * See the javadoc for {@code Math.atan2} for full details. - * - * @return the argument of {@code this}. - */ - public double getArgument() { - return FastMath.atan2(getImaginary(), getReal()); - } - - /** - * Computes the n-th roots of this complex number. - * The nth roots are defined by the formula: - *

-     *  
-     *   zk = abs1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
-     *  
-     * 
- * for {@code k=0, 1, ..., n-1}, where {@code abs} and {@code phi} - * are respectively the {@link #abs() modulus} and - * {@link #getArgument() argument} of this complex number. - *

- * If one or both parts of this complex number is NaN, a list with just - * one element, {@link #NaN} is returned. - * if neither part is NaN, but at least one part is infinite, the result - * is a one-element list containing {@link #INF}. - * - * @param n Degree of root. - * @return a List of all {@code n}-th roots of {@code this}. - * @throws NotPositiveException if {@code n <= 0}. - * @since 2.0 - */ - public List nthRoot(int n) throws NotPositiveException { - - if (n <= 0) { - throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, - n); - } - - final List result = new ArrayList<>(); - - if (isNaN) { - result.add(NaN); - return result; - } - if (isInfinite()) { - result.add(INF); - return result; - } - - // nth root of abs -- faster / more accurate to use a solver here? - final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); - - // Compute nth roots of complex number with k = 0, 1, ... n-1 - final double nthPhi = getArgument() / n; - final double slice = 2 * FastMath.PI / n; - double innerPart = nthPhi; - for (int k = 0; k < n ; k++) { - // inner part - final double realPart = nthRootOfAbs * FastMath.cos(innerPart); - final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); - result.add(createComplex(realPart, imaginaryPart)); - innerPart += slice; - } - - return result; - } - - /** - * Create a complex number given the real and imaginary parts. - * - * @param realPart Real part. - * @param imaginaryPart Imaginary part. - * @return a new complex number instance. - * @since 1.2 - * @see #valueOf(double, double) - */ - protected Complex createComplex(double realPart, - double imaginaryPart) { - return new Complex(realPart, imaginaryPart); - } - - /** - * Create a complex number given the real and imaginary parts. - * - * @param realPart Real part. - * @param imaginaryPart Imaginary part. - * @return a Complex instance. - */ - public static Complex valueOf(double realPart, - double imaginaryPart) { - if (Double.isNaN(realPart) || - Double.isNaN(imaginaryPart)) { - return NaN; - } - return new Complex(realPart, imaginaryPart); - } - - /** - * Create a complex number given only the real part. - * - * @param realPart Real part. - * @return a Complex instance. - */ - public static Complex valueOf(double realPart) { - if (Double.isNaN(realPart)) { - return NaN; - } - return new Complex(realPart); - } - - /** - * Resolve the transient fields in a deserialized Complex Object. - * Subclasses will need to override {@link #createComplex} to - * deserialize properly. - * - * @return A Complex instance with all fields resolved. - * @since 2.0 - */ - protected final Object readResolve() { - return createComplex(real, imaginary); - } - - /** {@inheritDoc} */ - @Override - public ComplexField getField() { - return ComplexField.getInstance(); - } - - /** {@inheritDoc} */ - @Override - public String toString() { - return "(" + real + ", " + imaginary + ")"; - } - -} diff --git a/src/main/java/org/apache/commons/math4/complex/ComplexField.java b/src/main/java/org/apache/commons/math4/complex/ComplexField.java deleted file mode 100644 index c761941e0..000000000 --- a/src/main/java/org/apache/commons/math4/complex/ComplexField.java +++ /dev/null @@ -1,86 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.commons.math4.complex; - -import java.io.Serializable; - -import org.apache.commons.math4.Field; -import org.apache.commons.math4.FieldElement; - -/** - * Representation of the complex numbers field. - *

- * This class is a singleton. - *

- * @see Complex - * @since 2.0 - */ -public class ComplexField implements Field, Serializable { - - /** Serializable version identifier. */ - private static final long serialVersionUID = -6130362688700788798L; - - /** Private constructor for the singleton. - */ - private ComplexField() { - } - - /** Get the unique instance. - * @return the unique instance - */ - public static ComplexField getInstance() { - return LazyHolder.INSTANCE; - } - - /** {@inheritDoc} */ - @Override - public Complex getOne() { - return Complex.ONE; - } - - /** {@inheritDoc} */ - @Override - public Complex getZero() { - return Complex.ZERO; - } - - /** {@inheritDoc} */ - @Override - public Class> getRuntimeClass() { - return Complex.class; - } - - // CHECKSTYLE: stop HideUtilityClassConstructor - /** Holder for the instance. - *

We use here the Initialization On Demand Holder Idiom.

- */ - private static class LazyHolder { - /** Cached field instance. */ - private static final ComplexField INSTANCE = new ComplexField(); - } - // CHECKSTYLE: resume HideUtilityClassConstructor - - /** Handle deserialization of the singleton. - * @return the singleton instance - */ - private Object readResolve() { - // return the singleton instance - return LazyHolder.INSTANCE; - } - -} diff --git a/src/test/java/org/apache/commons/math4/complex/ComplexFieldTest.java b/src/test/java/org/apache/commons/math4/complex/ComplexFieldTest.java deleted file mode 100644 index 50462fbb8..000000000 --- a/src/test/java/org/apache/commons/math4/complex/ComplexFieldTest.java +++ /dev/null @@ -1,44 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.complex; - -import org.apache.commons.math4.TestUtils; -import org.apache.commons.math4.complex.Complex; -import org.apache.commons.math4.complex.ComplexField; -import org.junit.Assert; -import org.junit.Test; - -public class ComplexFieldTest { - - @Test - public void testZero() { - Assert.assertEquals(Complex.ZERO, ComplexField.getInstance().getZero()); - } - - @Test - public void testOne() { - Assert.assertEquals(Complex.ONE, ComplexField.getInstance().getOne()); - } - - @Test - public void testSerial() { - // deserializing the singleton should give the singleton itself back - ComplexField field = ComplexField.getInstance(); - Assert.assertTrue(field == TestUtils.serializeAndRecover(field)); - } - -}