* Added erfc
* Top-coded both erf and erfc to return extreme values when true values are indistinguishable from extrema * Added tests against reference data JIRA: MATH-465, MATH-364 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_X@1054184 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
6794d0afe6
commit
593ae5e9e5
|
@ -17,6 +17,7 @@
|
|||
package org.apache.commons.math.special;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
/**
|
||||
* This is a utility class that provides computation methods related to the
|
||||
|
@ -34,24 +35,58 @@ public class Erf {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the error function erf(x).
|
||||
* <p>Returns the error function</p>
|
||||
* <p>erf(x) = 2/√π <sub>0</sub>∫<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt </p>
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <ul>
|
||||
* <li>
|
||||
* <a href="http://mathworld.wolfram.com/Erf.html">
|
||||
* Erf</a>, equation (3).</li>
|
||||
* </ul>
|
||||
* <p>This implementation computes erf(x) using the
|
||||
* {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function},
|
||||
* following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3)</p>
|
||||
*
|
||||
* <p>The value returned is always between -1 and 1 (inclusive). If {@code abs(x) > 40}, then
|
||||
* {@code erf(x)} is indistinguishable from either 1 or -1 as a double, so the appropriate extreme
|
||||
* value is returned.</p>
|
||||
*
|
||||
* @param x the value.
|
||||
* @return the error function erf(x)
|
||||
* @throws MathException if the algorithm fails to converge.
|
||||
* @see Gamma#regularizedGammaP(double, double, double, int)
|
||||
*/
|
||||
public static double erf(double x) throws MathException {
|
||||
if (FastMath.abs(x) > 40) {
|
||||
return x > 0 ? 1 : -1;
|
||||
}
|
||||
double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000);
|
||||
if (x < 0) {
|
||||
ret = -ret;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Returns the complementary error function</p>
|
||||
* <p>erfc(x) = 2/√π <sub>x</sub>∫<sup>∞</sup> e<sup>-t<sup>2</sup></sup>dt <br/>
|
||||
* = 1 - {@link #erf(double) erf(x)} </p>
|
||||
*
|
||||
* <p>This implementation computes erfc(x) using the
|
||||
* {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function},
|
||||
* following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3).</p>
|
||||
*
|
||||
* <p>The value returned is always between 0 and 2 (inclusive). If {@code abs(x) > 40}, then
|
||||
* {@code erf(x)} is indistinguishable from either 0 or 2 as a double, so the appropriate extreme
|
||||
* value is returned.</p>
|
||||
*
|
||||
* @param x the value
|
||||
* @return the complementary error function erfc(x)
|
||||
* @throws MathException if the algorithm fails to converge
|
||||
* @see Gamma#regularizedGammaQ(double, double, double, int)
|
||||
* @since 2.2
|
||||
*/
|
||||
public static double erfc(double x) throws MathException {
|
||||
if (FastMath.abs(x) > 40) {
|
||||
return x > 0 ? 0 : 2;
|
||||
}
|
||||
final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
|
||||
return x < 0 ? 2 - ret : ret;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -52,6 +52,13 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
If the output is not quite correct, check for invisible trailing spaces!
|
||||
-->
|
||||
<release version="2.2" date="TBD" description="TBD">
|
||||
<action dev="psteitz" type="update" issue="MATH-364" due-to="Christian Winter">
|
||||
Added complementary error function, erfc.
|
||||
</action>
|
||||
<action dev="psteitz" type="fix" issue="MATH-456">
|
||||
Modified erf (and erfc) to return extreme values for x with abs(x) > 40.
|
||||
For these arguments, the true value is indistinguishable from an extrema as a double.
|
||||
</action>
|
||||
<action dev="psteitz" type="update" issue="MATH-448" due-to="Patrick Meyer">
|
||||
Added a getUniqueCount() method to Frequency to return the number of unique
|
||||
values included in the frequency table.
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
package org.apache.commons.math.special;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.TestUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
|
@ -30,7 +31,8 @@ public class ErfTest extends TestCase {
|
|||
public void testErf0() throws MathException {
|
||||
double actual = Erf.erf(0.0);
|
||||
double expected = 0.0;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(expected, actual, 1.0e-15);
|
||||
assertEquals(1 - expected, Erf.erfc(0.0), 1.0e-15);
|
||||
}
|
||||
|
||||
public void testErf1960() throws MathException {
|
||||
|
@ -38,10 +40,12 @@ public class ErfTest extends TestCase {
|
|||
double actual = Erf.erf(x);
|
||||
double expected = 0.95;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
|
||||
|
||||
actual = Erf.erf(-x);
|
||||
expected = -expected;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
|
||||
}
|
||||
|
||||
public void testErf2576() throws MathException {
|
||||
|
@ -49,10 +53,12 @@ public class ErfTest extends TestCase {
|
|||
double actual = Erf.erf(x);
|
||||
double expected = 0.99;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(x), 1e-15);
|
||||
|
||||
actual = Erf.erf(-x);
|
||||
expected = -expected;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
|
||||
}
|
||||
|
||||
public void testErf2807() throws MathException {
|
||||
|
@ -60,10 +66,12 @@ public class ErfTest extends TestCase {
|
|||
double actual = Erf.erf(x);
|
||||
double expected = 0.995;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
|
||||
|
||||
actual = Erf.erf(-x);
|
||||
expected = -expected;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
|
||||
}
|
||||
|
||||
public void testErf3291() throws MathException {
|
||||
|
@ -71,20 +79,112 @@ public class ErfTest extends TestCase {
|
|||
double actual = Erf.erf(x);
|
||||
double expected = 0.999;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - expected, Erf.erfc(x), 1.0e-5);
|
||||
|
||||
actual = Erf.erf(-x);
|
||||
expected = -expected;
|
||||
assertEquals(expected, actual, 1.0e-5);
|
||||
assertEquals(1 - expected, Erf.erfc(-x), 1.0e-5);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* MATH-301
|
||||
* MATH-301, MATH-456
|
||||
*/
|
||||
public void testLargeValues() throws Exception {
|
||||
for (int i = 1; i < 200; i++) {
|
||||
for (int i = 1; i < 200; i*=10) {
|
||||
double result = Erf.erf(i);
|
||||
assertFalse(Double.isNaN(result));
|
||||
assertTrue(result > 0 && result <= 1);
|
||||
result = Erf.erf(-i);
|
||||
assertFalse(Double.isNaN(result));
|
||||
assertTrue(result >= -1 && result < 0);
|
||||
result = Erf.erfc(i);
|
||||
assertFalse(Double.isNaN(result));
|
||||
assertTrue(result >= 0 && result < 1);
|
||||
result = Erf.erfc(-i);
|
||||
assertFalse(Double.isNaN(result));
|
||||
assertTrue(result >= 1 && result <= 2);
|
||||
}
|
||||
assertEquals(-1, Erf.erf(Double.NEGATIVE_INFINITY), 0);
|
||||
assertEquals(1, Erf.erf(Double.POSITIVE_INFINITY), 0);
|
||||
assertEquals(2, Erf.erfc(Double.NEGATIVE_INFINITY), 0);
|
||||
assertEquals(0, Erf.erfc(Double.POSITIVE_INFINITY), 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare Erf.erf against reference values computed using GCC 4.2.1 (Apple OSX packaged version)
|
||||
* erfl (extended precision erf).
|
||||
*/
|
||||
public void testErfGnu() throws Exception {
|
||||
final double tol = 1E-15;
|
||||
final double[] gnuValues = new double[] {-1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -0.99999999999999997848,
|
||||
-0.99999999999999264217, -0.99999999999846254017, -0.99999999980338395581, -0.99999998458274209971,
|
||||
-0.9999992569016276586, -0.99997790950300141459, -0.99959304798255504108, -0.99532226501895273415,
|
||||
-0.96610514647531072711, -0.84270079294971486948, -0.52049987781304653809, 0,
|
||||
0.52049987781304653809, 0.84270079294971486948, 0.96610514647531072711, 0.99532226501895273415,
|
||||
0.99959304798255504108, 0.99997790950300141459, 0.9999992569016276586, 0.99999998458274209971,
|
||||
0.99999999980338395581, 0.99999999999846254017, 0.99999999999999264217, 0.99999999999999997848,
|
||||
1, 1, 1, 1,
|
||||
1, 1, 1, 1};
|
||||
double x = -10d;
|
||||
for (int i = 0; i < 41; i++) {
|
||||
assertEquals(gnuValues[i], Erf.erf(x), tol);
|
||||
x += 0.5d;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare Erf.erfc against reference values computed using GCC 4.2.1 (Apple OSX packaged version)
|
||||
* erfcl (extended precision erfc).
|
||||
*/
|
||||
public void testErfcGnu() throws Exception {
|
||||
final double tol = 1E-15;
|
||||
final double[] gnuValues = new double[] { 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 1.9999999999999999785,
|
||||
1.9999999999999926422, 1.9999999999984625402, 1.9999999998033839558, 1.9999999845827420998,
|
||||
1.9999992569016276586, 1.9999779095030014146, 1.9995930479825550411, 1.9953222650189527342,
|
||||
1.9661051464753107271, 1.8427007929497148695, 1.5204998778130465381, 1,
|
||||
0.47950012218695346194, 0.15729920705028513051, 0.033894853524689272893, 0.0046777349810472658333,
|
||||
0.00040695201744495893941, 2.2090496998585441366E-05, 7.4309837234141274516E-07, 1.5417257900280018858E-08,
|
||||
1.966160441542887477E-10, 1.5374597944280348501E-12, 7.3578479179743980661E-15, 2.1519736712498913103E-17,
|
||||
3.8421483271206474691E-20, 4.1838256077794144006E-23, 2.7766493860305691016E-26, 1.1224297172982927079E-29,
|
||||
2.7623240713337714448E-33, 4.1370317465138102353E-37, 3.7692144856548799402E-41, 2.0884875837625447567E-45};
|
||||
double x = -10d;
|
||||
for (int i = 0; i < 41; i++) {
|
||||
assertEquals(gnuValues[i], Erf.erfc(x), tol);
|
||||
x += 0.5d;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests erfc against reference data computed using Maple reported in Marsaglia, G,,
|
||||
* "Evaluating the Normal Distribution," Journal of Statistical Software, July, 2004.
|
||||
* http//www.jstatsoft.org/v11/a05/paper
|
||||
*/
|
||||
public void testErfcMaple() throws Exception {
|
||||
double[][] ref = new double[][]
|
||||
{{0.1, 4.60172162722971e-01},
|
||||
{1.2, 1.15069670221708e-01},
|
||||
{2.3, 1.07241100216758e-02},
|
||||
{3.4, 3.36929265676881e-04},
|
||||
{4.5, 3.39767312473006e-06},
|
||||
{5.6, 1.07175902583109e-08},
|
||||
{6.7, 1.04209769879652e-11},
|
||||
{7.8, 3.09535877195870e-15},
|
||||
{8.9, 2.79233437493966e-19},
|
||||
{10.0, 7.61985302416053e-24},
|
||||
{11.1, 6.27219439321703e-29},
|
||||
{12.2, 1.55411978638959e-34},
|
||||
{13.3, 1.15734162836904e-40},
|
||||
{14.4, 2.58717592540226e-47},
|
||||
{15.5, 1.73446079179387e-54},
|
||||
{16.6, 3.48454651995041e-62}
|
||||
};
|
||||
for (int i = 0; i < 15; i++) {
|
||||
final double result = 0.5*Erf.erfc(ref[i][0]/Math.sqrt(2));
|
||||
assertEquals(ref[i][1], result, 1E-15);
|
||||
TestUtils.assertRelativelyEquals(ref[i][1], result, 1E-13);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue