Modified to extend ContinuousDistributionAbstract test, improved coverage.

git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141252 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2004-05-30 22:13:35 +00:00
parent 229c782087
commit 5b9f353eea
1 changed files with 59 additions and 123 deletions

View File

@ -15,149 +15,85 @@
*/ */
package org.apache.commons.math.distribution; package org.apache.commons.math.distribution;
import org.apache.commons.math.MathException;
import junit.framework.TestCase;
/** /**
* @version $Revision: 1.13 $ $Date: 2004/02/28 21:58:33 $ * Test cases for TDistribution.
* Extends ContinuousDistributionAbstractTest. See class javadoc for
* ContinuousDistributionAbstractTest for details.
*
* @version $Revision: 1.14 $ $Date: 2004/05/30 22:13:35 $
*/ */
public class TDistributionTest extends TestCase { public class TDistributionTest extends ContinuousDistributionAbstractTest {
private TDistribution t;
/** /**
* Constructor for ChiSquareDistributionTest. * Constructor for TDistributionTest.
* @param name * @param name
*/ */
public TDistributionTest(String name) { public TDistributionTest(String name) {
super(name); super(name);
} }
/* //-------------- Implementations for abstract methods -----------------------
* @see TestCase#setUp()
*/ /** Creates the default continuous distribution instance to use in tests. */
protected void setUp() throws Exception { public ContinuousDistribution makeDistribution() {
return DistributionFactory.newInstance().createTDistribution(5.0);
}
/** Creates the default cumulative probability distribution test input values */
public double[] makeCumulativeTestPoints() {
// quantiles computed using R version 1.8.1 (linux version)
return new double[] {-5.89343,-3.36493, -2.570582, -2.015048,
-1.475884, 5.89343, 3.36493, 2.570582,
2.015048, 1.475884};
}
/** Creates the default cumulative probability density test expected values */
public double[] makeCumulativeTestValues() {
return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d,
0.990d, 0.975d, 0.950d, 0.900d};
}
// --------------------- Override tolerance --------------
protected void setup() throws Exception {
super.setUp(); super.setUp();
t = DistributionFactory.newInstance().createTDistribution(5.0); setTolerance(1E-6);
}
/*
* @see TestCase#tearDown()
*/
protected void tearDown() throws Exception {
t = null;
super.tearDown();
}
public void testInverseCumulativeProbability001() {
testValue(-5.893, .001);
}
public void testInverseCumulativeProbability010() {
testValue(-3.365, .010);
}
public void testInverseCumulativeProbability025() {
testValue(-2.571, .025);
}
public void testInverseCumulativeProbability050() {
testValue(-2.015, .050);
}
public void testInverseCumulativeProbability100() {
testValue(-1.476, .100);
}
public void testInverseCumulativeProbability999() {
testValue(5.893, .999);
}
public void testInverseCumulativeProbability990() {
testValue(3.365, .990);
}
public void testInverseCumulativeProbability975() {
testValue(2.571, .975);
}
public void testInverseCumulativeProbability950() {
testValue(2.015, .950);
}
public void testInverseCumulativeProbability900() {
testValue(1.476, .900);
}
public void testCumulativeProbability001() {
testProbability(-5.893, .001);
}
public void testCumulativeProbability010() {
testProbability(-3.365, .010);
}
public void testCumulativeProbability025() {
testProbability(-2.571, .025);
}
public void testCumulativeProbability050() {
testProbability(-2.015, .050);
}
public void testCumulativeProbability100() {
testProbability(-1.476, .100);
}
public void testCumulativeProbability999() {
testProbability(5.893, .999);
}
public void testCumulativeProbability990() {
testProbability(3.365, .990);
}
public void testCumulativeProbability975() {
testProbability(2.571, .975);
}
public void testCumulativeProbability950() {
testProbability(2.015, .950);
}
public void testCumulativeProbability900() {
testProbability(1.476, .900);
} }
//---------------------------- Additional test cases -------------------------
/** /**
* @see <a href="http://nagoya.apache.org/bugzilla/show_bug.cgi?id=27243"> * @see <a href="http://nagoya.apache.org/bugzilla/show_bug.cgi?id=27243">
* Bug report that prompted this unit test.</a> * Bug report that prompted this unit test.</a>
*/ */
public void testCumulativeProbabilityAgaintStackOverflow() { public void testCumulativeProbabilityAgaintStackOverflow() throws Exception {
try {
TDistributionImpl td = new TDistributionImpl(5.); TDistributionImpl td = new TDistributionImpl(5.);
double est; double est;
est = td.cumulativeProbability(.1); est = td.cumulativeProbability(.1);
est = td.cumulativeProbability(.01); est = td.cumulativeProbability(.01);
} catch(MathException ex) { }
fail(ex.getMessage());
public void testSmallDf() throws Exception {
setDistribution(DistributionFactory.newInstance().createTDistribution(1d));
setTolerance(1E-4);
// quantiles computed using R version 1.8.1 (linux version)
setCumulativeTestPoints(new double[] {-318.3088, -31.82052, -12.70620, -6.313752,
-3.077684, 318.3088, 31.82052, 12.70620,
6.313752, 3.077684});
setInverseCumulativeTestValues(getCumulativeTestPoints());
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
}
public void testDfAccessors() {
TDistribution distribution = (TDistribution) getDistribution();
assertEquals(5d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
distribution.setDegreesOfFreedom(4d);
assertEquals(4d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
try {
distribution.setDegreesOfFreedom(0d);
fail("Expecting IllegalArgumentException for df = 0");
} catch (IllegalArgumentException ex) {
// expected
} }
} }
private void testProbability(double x, double expected) {
try {
double actual = t.cumulativeProbability(x);
assertEquals(expected, actual, 10e-4);
} catch (MathException e) {
fail(e.getMessage());
}
}
private void testValue(double expected, double p) {
try {
double actual = t.inverseCumulativeProbability(p);
assertEquals(expected, actual, 10e-4);
} catch (MathException e) {
fail(e.getMessage());
}
}
} }