Modified to extend ContinuousDistributionAbstract test, improved coverage.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141252 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
229c782087
commit
5b9f353eea
|
@ -15,149 +15,85 @@
|
|||
*/
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
|
||||
/**
|
||||
* @version $Revision: 1.13 $ $Date: 2004/02/28 21:58:33 $
|
||||
* Test cases for TDistribution.
|
||||
* Extends ContinuousDistributionAbstractTest. See class javadoc for
|
||||
* ContinuousDistributionAbstractTest for details.
|
||||
*
|
||||
* @version $Revision: 1.14 $ $Date: 2004/05/30 22:13:35 $
|
||||
*/
|
||||
public class TDistributionTest extends TestCase {
|
||||
private TDistribution t;
|
||||
public class TDistributionTest extends ContinuousDistributionAbstractTest {
|
||||
|
||||
/**
|
||||
* Constructor for ChiSquareDistributionTest.
|
||||
* Constructor for TDistributionTest.
|
||||
* @param name
|
||||
*/
|
||||
public TDistributionTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
/*
|
||||
* @see TestCase#setUp()
|
||||
*/
|
||||
protected void setUp() throws Exception {
|
||||
//-------------- Implementations for abstract methods -----------------------
|
||||
|
||||
/** Creates the default continuous distribution instance to use in tests. */
|
||||
public ContinuousDistribution makeDistribution() {
|
||||
return DistributionFactory.newInstance().createTDistribution(5.0);
|
||||
}
|
||||
|
||||
/** Creates the default cumulative probability distribution test input values */
|
||||
public double[] makeCumulativeTestPoints() {
|
||||
// quantiles computed using R version 1.8.1 (linux version)
|
||||
return new double[] {-5.89343,-3.36493, -2.570582, -2.015048,
|
||||
-1.475884, 5.89343, 3.36493, 2.570582,
|
||||
2.015048, 1.475884};
|
||||
}
|
||||
|
||||
/** Creates the default cumulative probability density test expected values */
|
||||
public double[] makeCumulativeTestValues() {
|
||||
return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d,
|
||||
0.990d, 0.975d, 0.950d, 0.900d};
|
||||
}
|
||||
|
||||
// --------------------- Override tolerance --------------
|
||||
protected void setup() throws Exception {
|
||||
super.setUp();
|
||||
t = DistributionFactory.newInstance().createTDistribution(5.0);
|
||||
}
|
||||
|
||||
/*
|
||||
* @see TestCase#tearDown()
|
||||
*/
|
||||
protected void tearDown() throws Exception {
|
||||
t = null;
|
||||
super.tearDown();
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability001() {
|
||||
testValue(-5.893, .001);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability010() {
|
||||
testValue(-3.365, .010);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability025() {
|
||||
testValue(-2.571, .025);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability050() {
|
||||
testValue(-2.015, .050);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability100() {
|
||||
testValue(-1.476, .100);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability999() {
|
||||
testValue(5.893, .999);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability990() {
|
||||
testValue(3.365, .990);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability975() {
|
||||
testValue(2.571, .975);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability950() {
|
||||
testValue(2.015, .950);
|
||||
}
|
||||
|
||||
public void testInverseCumulativeProbability900() {
|
||||
testValue(1.476, .900);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability001() {
|
||||
testProbability(-5.893, .001);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability010() {
|
||||
testProbability(-3.365, .010);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability025() {
|
||||
testProbability(-2.571, .025);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability050() {
|
||||
testProbability(-2.015, .050);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability100() {
|
||||
testProbability(-1.476, .100);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability999() {
|
||||
testProbability(5.893, .999);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability990() {
|
||||
testProbability(3.365, .990);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability975() {
|
||||
testProbability(2.571, .975);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability950() {
|
||||
testProbability(2.015, .950);
|
||||
}
|
||||
|
||||
public void testCumulativeProbability900() {
|
||||
testProbability(1.476, .900);
|
||||
setTolerance(1E-6);
|
||||
}
|
||||
|
||||
//---------------------------- Additional test cases -------------------------
|
||||
/**
|
||||
* @see <a href="http://nagoya.apache.org/bugzilla/show_bug.cgi?id=27243">
|
||||
* Bug report that prompted this unit test.</a>
|
||||
*/
|
||||
public void testCumulativeProbabilityAgaintStackOverflow() {
|
||||
try {
|
||||
TDistributionImpl td = new TDistributionImpl(5.);
|
||||
double est;
|
||||
est = td.cumulativeProbability(.1);
|
||||
est = td.cumulativeProbability(.01);
|
||||
} catch(MathException ex) {
|
||||
fail(ex.getMessage());
|
||||
}
|
||||
public void testCumulativeProbabilityAgaintStackOverflow() throws Exception {
|
||||
TDistributionImpl td = new TDistributionImpl(5.);
|
||||
double est;
|
||||
est = td.cumulativeProbability(.1);
|
||||
est = td.cumulativeProbability(.01);
|
||||
}
|
||||
|
||||
private void testProbability(double x, double expected) {
|
||||
public void testSmallDf() throws Exception {
|
||||
setDistribution(DistributionFactory.newInstance().createTDistribution(1d));
|
||||
setTolerance(1E-4);
|
||||
// quantiles computed using R version 1.8.1 (linux version)
|
||||
setCumulativeTestPoints(new double[] {-318.3088, -31.82052, -12.70620, -6.313752,
|
||||
-3.077684, 318.3088, 31.82052, 12.70620,
|
||||
6.313752, 3.077684});
|
||||
setInverseCumulativeTestValues(getCumulativeTestPoints());
|
||||
verifyCumulativeProbabilities();
|
||||
verifyInverseCumulativeProbabilities();
|
||||
}
|
||||
|
||||
public void testDfAccessors() {
|
||||
TDistribution distribution = (TDistribution) getDistribution();
|
||||
assertEquals(5d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
|
||||
distribution.setDegreesOfFreedom(4d);
|
||||
assertEquals(4d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
|
||||
try {
|
||||
double actual = t.cumulativeProbability(x);
|
||||
assertEquals(expected, actual, 10e-4);
|
||||
} catch (MathException e) {
|
||||
fail(e.getMessage());
|
||||
}
|
||||
}
|
||||
private void testValue(double expected, double p) {
|
||||
try {
|
||||
double actual = t.inverseCumulativeProbability(p);
|
||||
assertEquals(expected, actual, 10e-4);
|
||||
} catch (MathException e) {
|
||||
fail(e.getMessage());
|
||||
distribution.setDegreesOfFreedom(0d);
|
||||
fail("Expecting IllegalArgumentException for df = 0");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue