parent
4ac5a9dec0
commit
5e28d11b17
|
@ -0,0 +1,202 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math3.ml.neuralnet.twod.util;
|
||||
|
||||
import java.util.Collection;
|
||||
import org.apache.commons.math3.ml.neuralnet.Neuron;
|
||||
import org.apache.commons.math3.ml.neuralnet.Network;
|
||||
import org.apache.commons.math3.ml.neuralnet.twod.NeuronSquareMesh2D;
|
||||
import org.apache.commons.math3.ml.distance.DistanceMeasure;
|
||||
|
||||
/**
|
||||
* <a href="http://en.wikipedia.org/wiki/U-Matrix">U-Matrix</a>
|
||||
* visualization of high-dimensional data projection.
|
||||
*/
|
||||
public class UnifiedDistanceMatrix implements MapVisualization {
|
||||
/** Whether to show distance between each pair of neighbouring units. */
|
||||
private final boolean individualDistances;
|
||||
/** Distance. */
|
||||
private final DistanceMeasure distance;
|
||||
|
||||
/**
|
||||
* @param boolean individualDistances. If {@code true}, the 8 individual
|
||||
* inter-units distances will be {@link #computeImage(NeuronSquareMesh2D)
|
||||
* computed}. They will be stored in additional pixels around each of
|
||||
* the original units of the 2D-map. The value zero will be stored in the
|
||||
* pixel corresponding to the location of a unit of the 2D-map.
|
||||
* If {@code false}, only the average distance between a unit and all its
|
||||
* neighbours will be computed (and stored in the pixel corresponding to
|
||||
* that unit of the 2D-map). In that case, the number of neighbours taken
|
||||
* into account depends on the network's
|
||||
* {@link org.apache.commons.math3.ml.neuralnet.SquareNeighbourhood
|
||||
* neighbourhood type}.
|
||||
* @param distance Distance.
|
||||
*/
|
||||
public UnifiedDistanceMatrix(boolean individualDistances,
|
||||
DistanceMeasure distance) {
|
||||
this.individualDistances = individualDistances;
|
||||
this.distance = distance;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double[][] computeImage(NeuronSquareMesh2D map) {
|
||||
if (individualDistances) {
|
||||
return individualDistances(map);
|
||||
} else {
|
||||
return averageDistances(map);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the distances between a unit of the map and its
|
||||
* neighbours.
|
||||
* The image will contain more pixels than the number of neurons
|
||||
* in the given {@code map} because each neuron has 8 neighbours.
|
||||
* The value zero will be stored in the pixels corresponding to
|
||||
* the location of a map unit.
|
||||
*
|
||||
* @param map Map.
|
||||
* @return an image representing the individual distances.
|
||||
*/
|
||||
private double[][] individualDistances(NeuronSquareMesh2D map) {
|
||||
final int numRows = map.getNumberOfRows();
|
||||
final int numCols = map.getNumberOfColumns();
|
||||
|
||||
final double[][] uMatrix = new double[numRows * 2 + 1][numCols * 2 + 1];
|
||||
|
||||
for (int i = 0; i < numRows; i++) {
|
||||
// Current unit's row index in result image.
|
||||
final int iR = 2 * i + 1;
|
||||
|
||||
for (int j = 0; j < numCols; j++) {
|
||||
// Current unit's column index in result image.
|
||||
final int jR = 2 * j + 1;
|
||||
|
||||
final double[] current = map.getNeuron(i, j).getFeatures();
|
||||
Neuron neighbour;
|
||||
|
||||
// Top-left neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.LEFT,
|
||||
NeuronSquareMesh2D.VerticalDirection.UP);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR - 1][jR - 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Top-center neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.CENTER,
|
||||
NeuronSquareMesh2D.VerticalDirection.UP);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR - 1][jR] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Top-right neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
|
||||
NeuronSquareMesh2D.VerticalDirection.UP);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR - 1][jR + 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Left neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.LEFT,
|
||||
NeuronSquareMesh2D.VerticalDirection.CENTER);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR][jR - 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Right neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
|
||||
NeuronSquareMesh2D.VerticalDirection.CENTER);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR][jR + 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Bottom-left neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.LEFT,
|
||||
NeuronSquareMesh2D.VerticalDirection.DOWN);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR + 1][jR - 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Bottom-center neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.CENTER,
|
||||
NeuronSquareMesh2D.VerticalDirection.DOWN);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR + 1][jR] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
|
||||
// Bottom-right neighbour.
|
||||
neighbour = map.getNeuron(i, j,
|
||||
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
|
||||
NeuronSquareMesh2D.VerticalDirection.DOWN);
|
||||
if (neighbour != null) {
|
||||
uMatrix[iR + 1][jR + 1] = distance.compute(current,
|
||||
neighbour.getFeatures());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return uMatrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the distances between a unit of the map and its neighbours.
|
||||
*
|
||||
* @param map Map.
|
||||
* @return an image representing the average distances.
|
||||
*/
|
||||
private double[][] averageDistances(NeuronSquareMesh2D map) {
|
||||
final int numRows = map.getNumberOfRows();
|
||||
final int numCols = map.getNumberOfColumns();
|
||||
final double[][] uMatrix = new double[numRows][numCols];
|
||||
|
||||
final Network net = map.getNetwork();
|
||||
|
||||
for (int i = 0; i < numRows; i++) {
|
||||
for (int j = 0; j < numCols; j++) {
|
||||
final Neuron neuron = map.getNeuron(i, j);
|
||||
final Collection<Neuron> neighbours = net.getNeighbours(neuron);
|
||||
final double[] features = neuron.getFeatures();
|
||||
|
||||
double d = 0;
|
||||
int count = 0;
|
||||
for (Neuron n : neighbours) {
|
||||
++count;
|
||||
d += distance.compute(features, n.getFeatures());
|
||||
}
|
||||
|
||||
uMatrix[i][j] = d / count;
|
||||
}
|
||||
}
|
||||
|
||||
return uMatrix;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue