diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/random/StableRandomGenerator.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/random/StableRandomGenerator.java deleted file mode 100644 index cfb6b4f48..000000000 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/random/StableRandomGenerator.java +++ /dev/null @@ -1,133 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.legacy.random; - -import org.apache.commons.rng.UniformRandomProvider; -import org.apache.commons.math4.legacy.exception.NullArgumentException; -import org.apache.commons.math4.legacy.exception.OutOfRangeException; -import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; -import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath; - -/** - *

This class provides a stable normalized random generator. It samples from a stable - * distribution with location parameter 0 and scale 1.

- * - *

The implementation uses the Chambers-Mallows-Stuck method as described in - * Handbook of computational statistics: concepts and methods by - * James E. Gentle, Wolfgang Härdle, Yuichi Mori.

- * - * @since 3.0 - */ -public class StableRandomGenerator implements NormalizedRandomGenerator { - /** Underlying generator. */ - private final UniformRandomProvider generator; - /** stability parameter. */ - private final double alpha; - /** skewness parameter. */ - private final double beta; - /** cache of expression value used in generation. */ - private final double zeta; - - /** - * Create a new generator. - * - * @param generator Underlying random generator - * @param alpha Stability parameter. Must be in range (0, 2] - * @param beta Skewness parameter. Must be in range [-1, 1] - * @throws NullArgumentException if generator is null - * @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2} - * or {@code beta < -1} or {@code beta > 1} - */ - public StableRandomGenerator(final UniformRandomProvider generator, - final double alpha, final double beta) - throws NullArgumentException, OutOfRangeException { - if (generator == null) { - throw new NullArgumentException(); - } - - if (!(alpha > 0d && alpha <= 2d)) { - throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT, - alpha, 0, 2); - } - - if (!(beta >= -1d && beta <= 1d)) { - throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_SIMPLE, - beta, -1, 1); - } - - this.generator = generator; - this.alpha = alpha; - this.beta = beta; - if (alpha < 2d && beta != 0d) { - zeta = beta * AccurateMath.tan(AccurateMath.PI * alpha / 2); - } else { - zeta = 0d; - } - } - - /** - * Generate a random scalar with zero location and unit scale. - * - * @return a random scalar with zero location and unit scale - */ - @Override - public double nextNormalizedDouble() { - // we need 2 uniform random numbers to calculate omega and phi - double omega = -AccurateMath.log(generator.nextDouble()); - double phi = AccurateMath.PI * (generator.nextDouble() - 0.5); - - // Normal distribution case (Box-Muller algorithm) - if (alpha == 2d) { - return AccurateMath.sqrt(2d * omega) * AccurateMath.sin(phi); - } - - double x; - // when beta = 0, zeta is zero as well - // Thus we can exclude it from the formula - if (beta == 0d) { - // Cauchy distribution case - if (alpha == 1d) { - x = AccurateMath.tan(phi); - } else { - x = AccurateMath.pow(omega * AccurateMath.cos((1 - alpha) * phi), - 1d / alpha - 1d) * - AccurateMath.sin(alpha * phi) / - AccurateMath.pow(AccurateMath.cos(phi), 1d / alpha); - } - } else { - // Generic stable distribution - double cosPhi = AccurateMath.cos(phi); - // to avoid rounding errors around alpha = 1 - if (AccurateMath.abs(alpha - 1d) > 1e-8) { - double alphaPhi = alpha * phi; - double invAlphaPhi = phi - alphaPhi; - x = (AccurateMath.sin(alphaPhi) + zeta * AccurateMath.cos(alphaPhi)) / cosPhi * - (AccurateMath.cos(invAlphaPhi) + zeta * AccurateMath.sin(invAlphaPhi)) / - AccurateMath.pow(omega * cosPhi, (1 - alpha) / alpha); - } else { - double betaPhi = AccurateMath.PI / 2 + beta * phi; - x = 2d / AccurateMath.PI * (betaPhi * AccurateMath.tan(phi) - beta * - AccurateMath.log(AccurateMath.PI / 2d * omega * cosPhi / betaPhi)); - - if (alpha != 1d) { - x += beta * AccurateMath.tan(AccurateMath.PI * alpha / 2); - } - } - } - return x; - } -} diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/random/StableRandomGeneratorTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/random/StableRandomGeneratorTest.java deleted file mode 100644 index 4f987ebc5..000000000 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/random/StableRandomGeneratorTest.java +++ /dev/null @@ -1,130 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.legacy.random; - -import org.apache.commons.math4.legacy.exception.OutOfRangeException; -import org.apache.commons.rng.UniformRandomProvider; -import org.apache.commons.rng.simple.RandomSource; -import org.apache.commons.math4.legacy.stat.StatUtils; -import org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics; -import org.junit.Assert; -import org.junit.Test; - -/** - * Tests for the class {@link StableRandomGenerator}. - */ -public class StableRandomGeneratorTest { - private final UniformRandomProvider rg = RandomSource.create(RandomSource.WELL_19937_C, 100); - private static final int sampleSize = 10000; - - /** - * Run the double nextDouble() method test Due to leptokurtic property the - * acceptance range is widened. - * - * TODO: verify that tolerance this wide is really OK - */ - @Test - public void testNextDouble() { - StableRandomGenerator generator = new StableRandomGenerator(rg, 1.3, - 0.1); - double[] sample = new double[2 * sampleSize]; - for (int i = 0; i < sample.length; ++i) { - sample[i] = generator.nextNormalizedDouble(); - } - Assert.assertEquals(0.0, StatUtils.mean(sample), 0.3); - } - - /** - * If alpha = 2, than it must be Gaussian distribution - */ - @Test - public void testGaussianCase() { - StableRandomGenerator generator = new StableRandomGenerator(rg, 2d, 0.0); - - double[] sample = new double[sampleSize]; - for (int i = 0; i < sample.length; ++i) { - sample[i] = generator.nextNormalizedDouble(); - } - Assert.assertEquals(0.0, StatUtils.mean(sample), 0.02); - Assert.assertEquals(1.0, StatUtils.variance(sample), 0.02); - } - - /** - * If alpha = 1, than it must be Cauchy distribution - */ - @Test - public void testCauchyCase() { - StableRandomGenerator generator = new StableRandomGenerator(rg, 1d, 0.0); - DescriptiveStatistics summary = new DescriptiveStatistics(); - - for (int i = 0; i < sampleSize; ++i) { - double sample = generator.nextNormalizedDouble(); - summary.addValue(sample); - } - - // Standard Cauchy distribution should have zero median and mode - double median = summary.getPercentile(50); - Assert.assertEquals(0.0, median, 0.2); - } - - /** - * Input parameter range tests - */ - @Test - public void testAlphaRangeBelowZero() { - try { - new StableRandomGenerator(rg, - -1.0, 0.0); - Assert.fail("Expected OutOfRangeException"); - } catch (OutOfRangeException e) { - Assert.assertEquals(-1.0, e.getArgument()); - } - } - - @Test - public void testAlphaRangeAboveTwo() { - try { - new StableRandomGenerator(rg, - 3.0, 0.0); - Assert.fail("Expected OutOfRangeException"); - } catch (OutOfRangeException e) { - Assert.assertEquals(3.0, e.getArgument()); - } - } - - @Test - public void testBetaRangeBelowMinusOne() { - try { - new StableRandomGenerator(rg, - 1.0, -2.0); - Assert.fail("Expected OutOfRangeException"); - } catch (OutOfRangeException e) { - Assert.assertEquals(-2.0, e.getArgument()); - } - } - - @Test - public void testBetaRangeAboveOne() { - try { - new StableRandomGenerator(rg, - 1.0, 2.0); - Assert.fail("Expected OutOfRangeException"); - } catch (OutOfRangeException e) { - Assert.assertEquals(2.0, e.getArgument()); - } - } -}