Merged CholeskyDecomposition and CholeskyDecompositionImpl (see MATH-662).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1173481 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-09-21 03:45:37 +00:00
parent 3c316a16d8
commit 60e328c213
5 changed files with 266 additions and 311 deletions

View File

@ -19,7 +19,7 @@ package org.apache.commons.math.filter;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.ArrayRealVector;
import org.apache.commons.math.linear.CholeskyDecompositionImpl;
import org.apache.commons.math.linear.CholeskyDecomposition;
import org.apache.commons.math.linear.DecompositionSolver;
import org.apache.commons.math.linear.MatrixDimensionMismatchException;
import org.apache.commons.math.linear.MatrixUtils;
@ -355,7 +355,7 @@ public class KalmanFilter {
// invert S
// as the error covariance matrix is a symmetric positive
// semi-definite matrix, we can use the cholesky decomposition
DecompositionSolver solver = new CholeskyDecompositionImpl(s).getSolver();
DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
RealMatrix invertedS = solver.getInverse();
// Inn = z(k) - H * xHat(k)-

View File

@ -17,25 +17,27 @@
package org.apache.commons.math.linear;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.util.FastMath;
/**
* An interface to classes that implement an algorithm to calculate the
* Cholesky decomposition of a real symmetric positive-definite matrix.
* Calculates the Cholesky decomposition of a matrix.
* <p>The Cholesky decomposition of a real symmetric positive-definite
* matrix A consists of a lower triangular matrix L with same size such
* that: A = LL<sup>T</sup>. In a sense, this is the square root of A.</p>
* <p>This interface is based on the class with similar name from the
* <p>This class is based on the class with similar name from the
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
* following changes:</p>
* <ul>
* <li>a {@link #getLT() getLT} method has been added,</li>
* <li>the <code>isspd</code> method has been removed, the constructors of
* implementation classes being expected to throw {@link NonPositiveDefiniteMatrixException}
* when a matrix cannot be decomposed,</li>
* <li>the {@code isspd} method has been removed, since the constructor of
* this class throws a {@link NonPositiveDefiniteMatrixException} when a
* matrix cannot be decomposed,</li>
* <li>a {@link #getDeterminant() getDeterminant} method has been added,</li>
* <li>the <code>solve</code> method has been replaced by a {@link
* #getSolver() getSolver} method and the equivalent method provided by
* the returned {@link DecompositionSolver}.</li>
* <li>the {@code solve} method has been replaced by a {@link #getSolver()
* getSolver} method and the equivalent method provided by the returned
* {@link DecompositionSolver}.</li>
* </ul>
*
* @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
@ -43,30 +45,263 @@ package org.apache.commons.math.linear;
* @version $Id$
* @since 2.0
*/
public interface CholeskyDecomposition {
public class CholeskyDecomposition {
/**
* Default threshold above which off-diagonal elements are considered too different
* and matrix not symmetric.
*/
public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;
/**
* Default threshold below which diagonal elements are considered null
* and matrix not positive definite.
*/
public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;
/** Row-oriented storage for L<sup>T</sup> matrix data. */
private double[][] lTData;
/** Cached value of L. */
private RealMatrix cachedL;
/** Cached value of LT. */
private RealMatrix cachedLT;
/**
* Calculates the Cholesky decomposition of the given matrix.
* <p>
* Calling this constructor is equivalent to call {@link
* #CholeskyDecompositionImpl(RealMatrix, double, double)} with the
* thresholds set to the default values {@link
* #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
* #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
* </p>
* @param matrix the matrix to decompose
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws NonPositiveDefiniteMatrixException if the matrix is not
* strictly positive definite.
* @see #CholeskyDecompositionImpl(RealMatrix, double, double)
* @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
* @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
*/
public CholeskyDecomposition(final RealMatrix matrix) {
this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
}
/**
* Calculates the Cholesky decomposition of the given matrix.
* @param matrix the matrix to decompose
* @param relativeSymmetryThreshold threshold above which off-diagonal
* elements are considered too different and matrix not symmetric
* @param absolutePositivityThreshold threshold below which diagonal
* elements are considered null and matrix not positive definite
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws NonPositiveDefiniteMatrixException if the matrix is not
* strictly positive definite.
* @see #CholeskyDecompositionImpl(RealMatrix)
* @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
* @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
*/
public CholeskyDecomposition(final RealMatrix matrix,
final double relativeSymmetryThreshold,
final double absolutePositivityThreshold) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
}
final int order = matrix.getRowDimension();
lTData = matrix.getData();
cachedL = null;
cachedLT = null;
// check the matrix before transformation
for (int i = 0; i < order; ++i) {
final double[] lI = lTData[i];
// check off-diagonal elements (and reset them to 0)
for (int j = i + 1; j < order; ++j) {
final double[] lJ = lTData[j];
final double lIJ = lI[j];
final double lJI = lJ[i];
final double maxDelta =
relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
if (FastMath.abs(lIJ - lJI) > maxDelta) {
throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold);
}
lJ[i] = 0;
}
}
// transform the matrix
for (int i = 0; i < order; ++i) {
final double[] ltI = lTData[i];
// check diagonal element
if (ltI[i] <= absolutePositivityThreshold) {
throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold);
}
ltI[i] = FastMath.sqrt(ltI[i]);
final double inverse = 1.0 / ltI[i];
for (int q = order - 1; q > i; --q) {
ltI[q] *= inverse;
final double[] ltQ = lTData[q];
for (int p = q; p < order; ++p) {
ltQ[p] -= ltI[q] * ltI[p];
}
}
}
}
/**
* Returns the matrix L of the decomposition.
* <p>L is an lower-triangular matrix</p>
* @return the L matrix
*/
RealMatrix getL();
public RealMatrix getL() {
if (cachedL == null) {
cachedL = getLT().transpose();
}
return cachedL;
}
/**
* Returns the transpose of the matrix L of the decomposition.
* <p>L<sup>T</sup> is an upper-triangular matrix</p>
* @return the transpose of the matrix L of the decomposition
*/
RealMatrix getLT();
public RealMatrix getLT() {
if (cachedLT == null) {
cachedLT = MatrixUtils.createRealMatrix(lTData);
}
// return the cached matrix
return cachedLT;
}
/**
* Return the determinant of the matrix
* @return determinant of the matrix
*/
double getDeterminant();
public double getDeterminant() {
double determinant = 1.0;
for (int i = 0; i < lTData.length; ++i) {
double lTii = lTData[i][i];
determinant *= lTii * lTii;
}
return determinant;
}
/**
* Get a solver for finding the A &times; X = B solution in least square sense.
* @return a solver
*/
DecompositionSolver getSolver();
public DecompositionSolver getSolver() {
return new Solver(lTData);
}
/** Specialized solver. */
private static class Solver implements DecompositionSolver {
/** Row-oriented storage for L<sup>T</sup> matrix data. */
private final double[][] lTData;
/**
* Build a solver from decomposed matrix.
* @param lTData row-oriented storage for L<sup>T</sup> matrix data
*/
private Solver(final double[][] lTData) {
this.lTData = lTData;
}
/** {@inheritDoc} */
public boolean isNonSingular() {
// if we get this far, the matrix was positive definite, hence non-singular
return true;
}
/** {@inheritDoc} */
public RealVector solve(final RealVector b) {
final int m = lTData.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
final double[] x = b.toArray();
// Solve LY = b
for (int j = 0; j < m; j++) {
final double[] lJ = lTData[j];
x[j] /= lJ[j];
final double xJ = x[j];
for (int i = j + 1; i < m; i++) {
x[i] -= xJ * lJ[i];
}
}
// Solve LTX = Y
for (int j = m - 1; j >= 0; j--) {
x[j] /= lTData[j][j];
final double xJ = x[j];
for (int i = 0; i < j; i++) {
x[i] -= xJ * lTData[i][j];
}
}
return new ArrayRealVector(x, false);
}
/** {@inheritDoc} */
public RealMatrix solve(RealMatrix b) {
final int m = lTData.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
final int nColB = b.getColumnDimension();
final double[][] x = b.getData();
// Solve LY = b
for (int j = 0; j < m; j++) {
final double[] lJ = lTData[j];
final double lJJ = lJ[j];
final double[] xJ = x[j];
for (int k = 0; k < nColB; ++k) {
xJ[k] /= lJJ;
}
for (int i = j + 1; i < m; i++) {
final double[] xI = x[i];
final double lJI = lJ[i];
for (int k = 0; k < nColB; ++k) {
xI[k] -= xJ[k] * lJI;
}
}
}
// Solve LTX = Y
for (int j = m - 1; j >= 0; j--) {
final double lJJ = lTData[j][j];
final double[] xJ = x[j];
for (int k = 0; k < nColB; ++k) {
xJ[k] /= lJJ;
}
for (int i = 0; i < j; i++) {
final double[] xI = x[i];
final double lIJ = lTData[i][j];
for (int k = 0; k < nColB; ++k) {
xI[k] -= xJ[k] * lIJ;
}
}
}
return new Array2DRowRealMatrix(x);
}
/** {@inheritDoc} */
public RealMatrix getInverse() {
return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
}
}
}

View File

@ -1,280 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.linear;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.util.FastMath;
/**
* Calculates the Cholesky decomposition of a matrix.
* <p>The Cholesky decomposition of a real symmetric positive-definite
* matrix A consists of a lower triangular matrix L with same size such
* that: A = LL<sup>T</sup>. In a sense, this is the square root of A.</p>
*
* @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
* @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
* @version $Id$
* @since 2.0
*/
public class CholeskyDecompositionImpl implements CholeskyDecomposition {
/**
* Default threshold above which off-diagonal elements are considered too different
* and matrix not symmetric.
*/
public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;
/**
* Default threshold below which diagonal elements are considered null
* and matrix not positive definite.
*/
public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;
/** Row-oriented storage for L<sup>T</sup> matrix data. */
private double[][] lTData;
/** Cached value of L. */
private RealMatrix cachedL;
/** Cached value of LT. */
private RealMatrix cachedLT;
/**
* Calculates the Cholesky decomposition of the given matrix.
* <p>
* Calling this constructor is equivalent to call {@link
* #CholeskyDecompositionImpl(RealMatrix, double, double)} with the
* thresholds set to the default values {@link
* #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
* #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
* </p>
* @param matrix the matrix to decompose
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws NonPositiveDefiniteMatrixException if the matrix is not
* strictly positive definite.
* @see #CholeskyDecompositionImpl(RealMatrix, double, double)
* @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
* @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
*/
public CholeskyDecompositionImpl(final RealMatrix matrix) {
this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
}
/**
* Calculates the Cholesky decomposition of the given matrix.
* @param matrix the matrix to decompose
* @param relativeSymmetryThreshold threshold above which off-diagonal
* elements are considered too different and matrix not symmetric
* @param absolutePositivityThreshold threshold below which diagonal
* elements are considered null and matrix not positive definite
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws NonPositiveDefiniteMatrixException if the matrix is not
* strictly positive definite.
* @see #CholeskyDecompositionImpl(RealMatrix)
* @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
* @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
*/
public CholeskyDecompositionImpl(final RealMatrix matrix,
final double relativeSymmetryThreshold,
final double absolutePositivityThreshold) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
}
final int order = matrix.getRowDimension();
lTData = matrix.getData();
cachedL = null;
cachedLT = null;
// check the matrix before transformation
for (int i = 0; i < order; ++i) {
final double[] lI = lTData[i];
// check off-diagonal elements (and reset them to 0)
for (int j = i + 1; j < order; ++j) {
final double[] lJ = lTData[j];
final double lIJ = lI[j];
final double lJI = lJ[i];
final double maxDelta =
relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
if (FastMath.abs(lIJ - lJI) > maxDelta) {
throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold);
}
lJ[i] = 0;
}
}
// transform the matrix
for (int i = 0; i < order; ++i) {
final double[] ltI = lTData[i];
// check diagonal element
if (ltI[i] <= absolutePositivityThreshold) {
throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold);
}
ltI[i] = FastMath.sqrt(ltI[i]);
final double inverse = 1.0 / ltI[i];
for (int q = order - 1; q > i; --q) {
ltI[q] *= inverse;
final double[] ltQ = lTData[q];
for (int p = q; p < order; ++p) {
ltQ[p] -= ltI[q] * ltI[p];
}
}
}
}
/** {@inheritDoc} */
public RealMatrix getL() {
if (cachedL == null) {
cachedL = getLT().transpose();
}
return cachedL;
}
/** {@inheritDoc} */
public RealMatrix getLT() {
if (cachedLT == null) {
cachedLT = MatrixUtils.createRealMatrix(lTData);
}
// return the cached matrix
return cachedLT;
}
/** {@inheritDoc} */
public double getDeterminant() {
double determinant = 1.0;
for (int i = 0; i < lTData.length; ++i) {
double lTii = lTData[i][i];
determinant *= lTii * lTii;
}
return determinant;
}
/** {@inheritDoc} */
public DecompositionSolver getSolver() {
return new Solver(lTData);
}
/** Specialized solver. */
private static class Solver implements DecompositionSolver {
/** Row-oriented storage for L<sup>T</sup> matrix data. */
private final double[][] lTData;
/**
* Build a solver from decomposed matrix.
* @param lTData row-oriented storage for L<sup>T</sup> matrix data
*/
private Solver(final double[][] lTData) {
this.lTData = lTData;
}
/** {@inheritDoc} */
public boolean isNonSingular() {
// if we get this far, the matrix was positive definite, hence non-singular
return true;
}
/** {@inheritDoc} */
public RealVector solve(final RealVector b) {
final int m = lTData.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
final double[] x = b.toArray();
// Solve LY = b
for (int j = 0; j < m; j++) {
final double[] lJ = lTData[j];
x[j] /= lJ[j];
final double xJ = x[j];
for (int i = j + 1; i < m; i++) {
x[i] -= xJ * lJ[i];
}
}
// Solve LTX = Y
for (int j = m - 1; j >= 0; j--) {
x[j] /= lTData[j][j];
final double xJ = x[j];
for (int i = 0; i < j; i++) {
x[i] -= xJ * lTData[i][j];
}
}
return new ArrayRealVector(x, false);
}
/** {@inheritDoc} */
public RealMatrix solve(RealMatrix b) {
final int m = lTData.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
final int nColB = b.getColumnDimension();
final double[][] x = b.getData();
// Solve LY = b
for (int j = 0; j < m; j++) {
final double[] lJ = lTData[j];
final double lJJ = lJ[j];
final double[] xJ = x[j];
for (int k = 0; k < nColB; ++k) {
xJ[k] /= lJJ;
}
for (int i = j + 1; i < m; i++) {
final double[] xI = x[i];
final double lJI = lJ[i];
for (int k = 0; k < nColB; ++k) {
xI[k] -= xJ[k] * lJI;
}
}
}
// Solve LTX = Y
for (int j = m - 1; j >= 0; j--) {
final double lJJ = lTData[j][j];
final double[] xJ = x[j];
for (int k = 0; k < nColB; ++k) {
xJ[k] /= lJJ;
}
for (int i = 0; i < j; i++) {
final double[] xI = x[i];
final double lIJ = lTData[i][j];
for (int k = 0; k < nColB; ++k) {
xI[k] -= xJ[k] * lIJ;
}
}
}
return new Array2DRowRealMatrix(x);
}
/** {@inheritDoc} */
public RealMatrix getInverse() {
return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
}
}
}

View File

@ -20,7 +20,7 @@ package org.apache.commons.math.linear;
import org.junit.Test;
import org.junit.Assert;
public class CholeskyDecompositionImplTest {
public class CholeskyDecompositionTest {
private double[][] testData = new double[][] {
{ 1, 2, 4, 7, 11 },
@ -33,8 +33,8 @@ public class CholeskyDecompositionImplTest {
/** test dimensions */
@Test
public void testDimensions() {
CholeskyDecompositionImpl llt =
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(testData));
CholeskyDecomposition llt =
new CholeskyDecomposition(MatrixUtils.createRealMatrix(testData));
Assert.assertEquals(testData.length, llt.getL().getRowDimension());
Assert.assertEquals(testData.length, llt.getL().getColumnDimension());
Assert.assertEquals(testData.length, llt.getLT().getRowDimension());
@ -44,7 +44,7 @@ public class CholeskyDecompositionImplTest {
/** test non-square matrix */
@Test(expected = NonSquareMatrixException.class)
public void testNonSquare() {
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(new double[3][2]));
new CholeskyDecomposition(MatrixUtils.createRealMatrix(new double[3][2]));
}
/** test non-symmetric matrix */
@ -52,13 +52,13 @@ public class CholeskyDecompositionImplTest {
public void testNotSymmetricMatrixException() {
double[][] changed = testData.clone();
changed[0][changed[0].length - 1] += 1.0e-5;
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(changed));
new CholeskyDecomposition(MatrixUtils.createRealMatrix(changed));
}
/** test non positive definite matrix */
@Test(expected = NonPositiveDefiniteMatrixException.class)
public void testNotPositiveDefinite() {
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(new double[][] {
new CholeskyDecomposition(MatrixUtils.createRealMatrix(new double[][] {
{ 14, 11, 13, 15, 24 },
{ 11, 34, 13, 8, 25 },
{ 13, 13, 14, 15, 21 },
@ -69,7 +69,7 @@ public class CholeskyDecompositionImplTest {
@Test(expected = NonPositiveDefiniteMatrixException.class)
public void testMath274() {
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(new double[][] {
new CholeskyDecomposition(MatrixUtils.createRealMatrix(new double[][] {
{ 0.40434286, -0.09376327, 0.30328980, 0.04909388 },
{-0.09376327, 0.10400408, 0.07137959, 0.04762857 },
{ 0.30328980, 0.07137959, 0.30458776, 0.04882449 },
@ -82,7 +82,7 @@ public class CholeskyDecompositionImplTest {
@Test
public void testAEqualLLT() {
RealMatrix matrix = MatrixUtils.createRealMatrix(testData);
CholeskyDecompositionImpl llt = new CholeskyDecompositionImpl(matrix);
CholeskyDecomposition llt = new CholeskyDecomposition(matrix);
RealMatrix l = llt.getL();
RealMatrix lt = llt.getLT();
double norm = l.multiply(lt).subtract(matrix).getNorm();
@ -93,7 +93,7 @@ public class CholeskyDecompositionImplTest {
@Test
public void testLLowerTriangular() {
RealMatrix matrix = MatrixUtils.createRealMatrix(testData);
RealMatrix l = new CholeskyDecompositionImpl(matrix).getL();
RealMatrix l = new CholeskyDecomposition(matrix).getL();
for (int i = 0; i < l.getRowDimension(); i++) {
for (int j = i + 1; j < l.getColumnDimension(); j++) {
Assert.assertEquals(0.0, l.getEntry(i, j), 0.0);
@ -105,7 +105,7 @@ public class CholeskyDecompositionImplTest {
@Test
public void testLTTransposed() {
RealMatrix matrix = MatrixUtils.createRealMatrix(testData);
CholeskyDecompositionImpl llt = new CholeskyDecompositionImpl(matrix);
CholeskyDecomposition llt = new CholeskyDecomposition(matrix);
RealMatrix l = llt.getL();
RealMatrix lt = llt.getLT();
double norm = l.subtract(lt.transpose()).getNorm();
@ -122,8 +122,8 @@ public class CholeskyDecompositionImplTest {
{ 7, 8, 9, 10, 0 },
{ 11, 12, 13, 14, 15 }
});
CholeskyDecompositionImpl llt =
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(testData));
CholeskyDecomposition llt =
new CholeskyDecomposition(MatrixUtils.createRealMatrix(testData));
// check values against known references
RealMatrix l = llt.getL();

View File

@ -36,7 +36,7 @@ public class CholeskySolverTest {
@Test
public void testSolveDimensionErrors() {
DecompositionSolver solver =
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(testData)).getSolver();
new CholeskyDecomposition(MatrixUtils.createRealMatrix(testData)).getSolver();
RealMatrix b = MatrixUtils.createRealMatrix(new double[2][2]);
try {
solver.solve(b);
@ -62,7 +62,7 @@ public class CholeskySolverTest {
@Test
public void testSolve() {
DecompositionSolver solver =
new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(testData)).getSolver();
new CholeskyDecomposition(MatrixUtils.createRealMatrix(testData)).getSolver();
RealMatrix b = MatrixUtils.createRealMatrix(new double[][] {
{ 78, -13, 1 },
{ 414, -62, -1 },
@ -106,7 +106,7 @@ public class CholeskySolverTest {
}
private double getDeterminant(RealMatrix m) {
return new CholeskyDecompositionImpl(m).getDeterminant();
return new CholeskyDecomposition(m).getDeterminant();
}
}