Fixed an error in rectangular Cholesky decomposition.

JIRA: MATH-789

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1384363 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2012-09-13 15:13:03 +00:00
parent 8469bc496c
commit 621bbb8fc7
4 changed files with 211 additions and 21 deletions

View File

@ -52,6 +52,9 @@ If the output is not quite correct, check for invisible trailing spaces!
<body>
<release version="3.1" date="TBD" description="
">
<action dev="lus" type="fix" issue="MATH-789">
Fixed an error in rectangular Cholesky decomposition.
</action>
<action dev="psteitz" type="update" issue="MATH-859">
Clarified definition of isSupportXxxBoundInclusive in RealDistribution
interface, made code consistent with the definition, and deprecated

View File

@ -62,11 +62,10 @@ public class RectangularCholeskyDecomposition {
public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
throws NonPositiveDefiniteMatrixException {
int order = matrix.getRowDimension();
double[][] c = matrix.getData();
double[][] b = new double[order][order];
final int order = matrix.getRowDimension();
final double[][] c = matrix.getData();
final double[][] b = new double[order][order];
int[] swap = new int[order];
int[] index = new int[order];
for (int i = 0; i < order; ++i) {
index[i] = i;
@ -76,21 +75,24 @@ public class RectangularCholeskyDecomposition {
for (boolean loop = true; loop;) {
// find maximal diagonal element
swap[r] = r;
int swapR = r;
for (int i = r + 1; i < order; ++i) {
int ii = index[i];
int isi = index[swap[i]];
if (c[ii][ii] > c[isi][isi]) {
swap[r] = i;
int isr = index[swapR];
if (c[ii][ii] > c[isr][isr]) {
swapR = i;
}
}
// swap elements
if (swap[r] != r) {
int tmp = index[r];
index[r] = index[swap[r]];
index[swap[r]] = tmp;
if (swapR != r) {
final int tmpIndex = index[r];
index[r] = index[swapR];
index[swapR] = tmpIndex;
final double[] tmpRow = b[r];
b[r] = b[swapR];
b[swapR] = tmpRow;
}
// check diagonal element
@ -118,17 +120,18 @@ public class RectangularCholeskyDecomposition {
} else {
// transform the matrix
double sqrt = FastMath.sqrt(c[ir][ir]);
final double sqrt = FastMath.sqrt(c[ir][ir]);
b[r][r] = sqrt;
double inverse = 1 / sqrt;
final double inverse = 1 / sqrt;
final double inverse2 = 1 / c[ir][ir];
for (int i = r + 1; i < order; ++i) {
int ii = index[i];
double e = inverse * c[ii][ir];
final int ii = index[i];
final double e = inverse * c[ii][ir];
b[i][r] = e;
c[ii][ii] -= e * e;
c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2;
for (int j = r + 1; j < i; ++j) {
int ij = index[j];
double f = c[ii][ij] - e * b[j][r];
final int ij = index[j];
final double f = c[ii][ij] - e * b[j][r];
c[ii][ij] = f;
c[ij][ii] = f;
}

View File

@ -0,0 +1,112 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.linear;
import org.junit.Test;
import org.junit.Assert;
public class RectangularCholeskyDecompositionTest {
@Test
public void testDecomposition3x3() {
RealMatrix m = MatrixUtils.createRealMatrix(new double[][] {
{ 1, 9, 9 },
{ 9, 225, 225 },
{ 9, 225, 625 }
});
RectangularCholeskyDecomposition d =
new RectangularCholeskyDecomposition(m, 1.0e-6);
// as this decomposition permutes lines and columns, the root is NOT triangular
// (in fact here it is the lower right part of the matrix which is zero and
// the upper left non-zero)
Assert.assertEquals(0.8, d.getRootMatrix().getEntry(0, 2), 1.0e-15);
Assert.assertEquals(25.0, d.getRootMatrix().getEntry(2, 0), 1.0e-15);
Assert.assertEquals(0.0, d.getRootMatrix().getEntry(2, 2), 1.0e-15);
RealMatrix root = d.getRootMatrix();
RealMatrix rebuiltM = root.multiply(root.transpose());
Assert.assertEquals(0.0, m.subtract(rebuiltM).getNorm(), 1.0e-15);
}
@Test
public void testFullRank() {
RealMatrix base = MatrixUtils.createRealMatrix(new double[][] {
{ 0.1159548705, 0., 0., 0. },
{ 0.0896442724, 0.1223540781, 0., 0. },
{ 0.0852155322, 4.558668e-3, 0.1083577299, 0. },
{ 0.0905486674, 0.0213768077, 0.0128878333, 0.1014155693 }
});
RealMatrix m = base.multiply(base.transpose());
RectangularCholeskyDecomposition d =
new RectangularCholeskyDecomposition(m, 1.0e-10);
RealMatrix root = d.getRootMatrix();
RealMatrix rebuiltM = root.multiply(root.transpose());
Assert.assertEquals(0.0, m.subtract(rebuiltM).getNorm(), 1.0e-15);
// the pivoted Cholesky decomposition is *not* unique. Here, the root is
// not equal to the original trianbular base matrix
Assert.assertTrue(root.subtract(base).getNorm() > 0.3);
}
@Test
public void testMath789() {
final RealMatrix m1 = MatrixUtils.createRealMatrix(new double[][]{
{0.013445532, 0.010394690, 0.009881156, 0.010499559},
{0.010394690, 0.023006616, 0.008196856, 0.010732709},
{0.009881156, 0.008196856, 0.019023866, 0.009210099},
{0.010499559, 0.010732709, 0.009210099, 0.019107243}
});
RealMatrix root1 = new RectangularCholeskyDecomposition(m1, 1.0e-10).getRootMatrix();
RealMatrix rebuiltM1 = root1.multiply(root1.transpose());
Assert.assertEquals(0.0, m1.subtract(rebuiltM1).getNorm(), 1.0e-16);
final RealMatrix m2 = MatrixUtils.createRealMatrix(new double[][]{
{0.0, 0.0, 0.0, 0.0, 0.0},
{0.0, 0.013445532, 0.010394690, 0.009881156, 0.010499559},
{0.0, 0.010394690, 0.023006616, 0.008196856, 0.010732709},
{0.0, 0.009881156, 0.008196856, 0.019023866, 0.009210099},
{0.0, 0.010499559, 0.010732709, 0.009210099, 0.019107243}
});
RealMatrix root2 = new RectangularCholeskyDecomposition(m2, 1.0e-10).getRootMatrix();
RealMatrix rebuiltM2 = root2.multiply(root2.transpose());
Assert.assertEquals(0.0, m2.subtract(rebuiltM2).getNorm(), 1.0e-16);
final RealMatrix m3 = MatrixUtils.createRealMatrix(new double[][]{
{0.013445532, 0.010394690, 0.0, 0.009881156, 0.010499559},
{0.010394690, 0.023006616, 0.0, 0.008196856, 0.010732709},
{0.0, 0.0, 0.0, 0.0, 0.0},
{0.009881156, 0.008196856, 0.0, 0.019023866, 0.009210099},
{0.010499559, 0.010732709, 0.0, 0.009210099, 0.019107243}
});
RealMatrix root3 = new RectangularCholeskyDecomposition(m3, 1.0e-10).getRootMatrix();
RealMatrix rebuiltM3 = root3.multiply(root3.transpose());
Assert.assertEquals(0.0, m3.subtract(rebuiltM3).getNorm(), 1.0e-16);
}
}

View File

@ -17,8 +17,13 @@
package org.apache.commons.math3.random;
import java.util.Arrays;
import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.stat.correlation.StorelessCovariance;
import org.apache.commons.math3.stat.descriptive.moment.VectorialCovariance;
import org.apache.commons.math3.stat.descriptive.moment.VectorialMean;
import org.apache.commons.math3.util.FastMath;
@ -82,9 +87,19 @@ public class CorrelatedRandomVectorGeneratorTest {
CorrelatedRandomVectorGenerator sg =
new CorrelatedRandomVectorGenerator(mean, covRM, 0.00001, rg);
double[] min = new double[mean.length];
Arrays.fill(min, Double.POSITIVE_INFINITY);
double[] max = new double[mean.length];
Arrays.fill(max, Double.NEGATIVE_INFINITY);
for (int i = 0; i < 10; i++) {
double[] generated = sg.nextVector();
Assert.assertTrue(FastMath.abs(generated[0] - 1) > 0.1);
for (int j = 0; j < generated.length; ++j) {
min[j] = FastMath.min(min[j], generated[j]);
max[j] = FastMath.max(max[j], generated[j]);
}
}
for (int j = 0; j < min.length; ++j) {
Assert.assertTrue(max[j] - min[j] > 2.0);
}
}
@ -123,4 +138,61 @@ public class CorrelatedRandomVectorGeneratorTest {
}
}
@Test
public void testSampleWithZeroCovariance() {
final double[][] covMatrix1 = new double[][]{
{0.013445532, 0.010394690, 0.009881156, 0.010499559},
{0.010394690, 0.023006616, 0.008196856, 0.010732709},
{0.009881156, 0.008196856, 0.019023866, 0.009210099},
{0.010499559, 0.010732709, 0.009210099, 0.019107243}
};
final double[][] covMatrix2 = new double[][]{
{0.0, 0.0, 0.0, 0.0, 0.0},
{0.0, 0.013445532, 0.010394690, 0.009881156, 0.010499559},
{0.0, 0.010394690, 0.023006616, 0.008196856, 0.010732709},
{0.0, 0.009881156, 0.008196856, 0.019023866, 0.009210099},
{0.0, 0.010499559, 0.010732709, 0.009210099, 0.019107243}
};
final double[][] covMatrix3 = new double[][]{
{0.013445532, 0.010394690, 0.0, 0.009881156, 0.010499559},
{0.010394690, 0.023006616, 0.0, 0.008196856, 0.010732709},
{0.0, 0.0, 0.0, 0.0, 0.0},
{0.009881156, 0.008196856, 0.0, 0.019023866, 0.009210099},
{0.010499559, 0.010732709, 0.0, 0.009210099, 0.019107243}
};
testSampler(covMatrix1, 10000, 0.001);
testSampler(covMatrix2, 10000, 0.001);
testSampler(covMatrix3, 10000, 0.001);
}
private CorrelatedRandomVectorGenerator createSampler(double[][] cov) {
RealMatrix matrix = new Array2DRowRealMatrix(cov);
double small = 10e-12 * matrix.getNorm();
return new CorrelatedRandomVectorGenerator(
new double[cov.length],
matrix,
small,
new GaussianRandomGenerator(new JDKRandomGenerator()));
}
private void testSampler(final double[][] covMatrix, int samples, double epsilon) {
CorrelatedRandomVectorGenerator sampler = createSampler(covMatrix);
StorelessCovariance cov = new StorelessCovariance(covMatrix.length);
for (int i = 0; i < samples; ++i) {
cov.increment(sampler.nextVector());
}
double[][] sampleCov = cov.getData();
for (int r = 0; r < covMatrix.length; ++r) {
TestUtils.assertEquals(covMatrix[r], sampleCov[r], epsilon);
}
}
}