Added Pearsons correlation implemendation. JIRA: MATH-114

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@744802 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-02-16 05:09:49 +00:00
parent 2d73d9f99a
commit 64fa01cd78
5 changed files with 736 additions and 0 deletions

View File

@ -0,0 +1,270 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.correlation;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.distribution.TDistributionImpl;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.DenseRealMatrix;
import org.apache.commons.math.stat.regression.SimpleRegression;
/**
* Computes Pearson's product-moment correlation coefficients for pairs of arrays
* or columns of a matrix.
*
* <p>The constructors that take <code>RealMatrix</code> or
* <code>double[][]</code> arguments generate correlation matrices. The
* columns of the input matrices are assumed to represent variable values.
* Correlations are given by the formula</p>
* <code>cor(X, Y) = &Sigma;[(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / [(n - 1)s(X)s(Y)]</code>
* where <code>E(X)</code> is the mean of <code>X</code>, <code>E(Y)</code>
* is the mean of the <code>Y</code> values and s(X), s(Y) are standard deviations.
*
* @version $Revision$ $Date$
* @since 2.0
*/
public class PearsonsCorrelation {
/** correlation matrix */
private final RealMatrix correlationMatrix;
/** number of observations */
private final int nObs;
/**
* Create a PearsonsCorrelation instance without data
*/
public PearsonsCorrelation() {
super();
correlationMatrix = null;
nObs = 0;
}
/**
* Create a PearsonsCorrelation from a rectangular array
* whose columns represent values of variables to be correlated.
*
* @param data rectangular array with columns representing variables
* @throws IllegalArgumentException if the input data array is not
* rectangular with at least two rows and two columns.
*/
public PearsonsCorrelation(double[][] data) {
this(new DenseRealMatrix(data));
}
/**
* Create a PearsonsCorrelation from a RealMatrix whose columns
* represent variables to be correlated.
*
* @param matrix matrix with columns representing variables to correlate
*/
public PearsonsCorrelation(RealMatrix matrix) {
checkSufficientData(matrix);
nObs = matrix.getRowDimension();
correlationMatrix = computeCorrelation(matrix);
}
/**
* Create a PearsonsCorrelation from a {@link Covariance}. The correlation
* matrix is computed by scaling the Covariance's covariance matrix.
* The Covariance instance must have been created from a data matrix with
* columns representing variable values.
*
* @param covariance Covariance instance
*/
public PearsonsCorrelation(Covariance covariance) {
RealMatrix covarianceMatrix = covariance.getCovarianceMatrix();
if (covarianceMatrix == null) {
throw MathRuntimeException.createIllegalArgumentException(
"Covariance matrix is null", null);
}
nObs = covariance.getN();
correlationMatrix = covarianceToCorrelation(covarianceMatrix);
}
/**
* Create a PearsonsCorrelation from a covariance matrix. The correlation
* matrix is computed by scaling the covariance matrix.
*
* @param covarianceMatrix covariance matrix
* @param numberOfObservations the number of observations in the dataset used to compute
* the covariance matrix
*/
public PearsonsCorrelation(RealMatrix covarianceMatrix, int numberOfObservations) {
nObs = numberOfObservations;
correlationMatrix = covarianceToCorrelation(covarianceMatrix);
}
/**
* Returns the correlation matrix
*
* @return correlation matrix
*/
public RealMatrix getCorrelationMatrix() {
return correlationMatrix;
}
/**
* Returns a matrix of standard errors associated with the estimates
* in the correlation matrix.<br/>
* <code>getCorrelationStandardErrors().getEntry(i,j)</code> is the standard
* error associated with <code>getCorrelationMatrix.getEntry(i,j)</code>
* <p>The formula used to compute the standard error is <br/>
* <code>SE<sub>r</sub> = ((1 - r<sup>2</sup>) / (n - 2))<sup>1/2</sup></code>
* where <code>r</code> is the estimated correlation coefficient and
* <code>n</code> is the number of observations in the source dataset.</p>
*
* @return matrix of correlation standard errors
*/
public RealMatrix getCorrelationStandardErrors() {
int nVars = correlationMatrix.getColumnDimension();
double[][] out = new double[nVars][nVars];
for (int i = 0; i < nVars; i++) {
for (int j = 0; j < nVars; j++) {
double r = correlationMatrix.getEntry(i, j);
out[i][j] = Math.sqrt((1 - r * r) /(nObs - 2));
}
}
return new DenseRealMatrix(out);
}
/**
* Returns a matrix of p-values associated with the (two-sided) null
* hypothesis that the corresponding correlation coefficient is zero.
* <p><code>getCorrelationPValues().getEntry(i,j)</code> is the probability
* that a random variable distributed as <code>t<sub>n-2</sub></code> takes
* a value with absolute value greater than or equal to <br>
* <code>|r|((n - 2) / (1 - r<sup>2</sup>))<sup>1/2</sup></code></p>
* <p>The values in the matrix are sometimes referred to as the
* <i>significance</i> of the corresponding correlation coefficients.</p>
*
* @return matrix of p-values
* @throws MathException if an error occurs estimating probabilities
*/
public RealMatrix getCorrelationPValues() throws MathException {
TDistribution tDistribution = new TDistributionImpl(nObs - 2);
int nVars = correlationMatrix.getColumnDimension();
double[][] out = new double[nVars][nVars];
for (int i = 0; i < nVars; i++) {
for (int j = 0; j < nVars; j++) {
if (i == j) {
out[i][j] = 0d;
} else {
double r = correlationMatrix.getEntry(i, j);
double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));
out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(t));
}
}
}
return new DenseRealMatrix(out);
}
/**
* Computes the correlation matrix for the columns of the
* input matrix.
*
* @param matrix matrix with columns representing variables to correlate
* @return correlation matrix
*/
public RealMatrix computeCorrelation(RealMatrix matrix) {
int nVars = matrix.getColumnDimension();
RealMatrix outMatrix = new DenseRealMatrix(nVars, nVars);
for (int i = 0; i < nVars; i++) {
for (int j = 0; j < i; j++) {
double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
outMatrix.setEntry(i, j, corr);
outMatrix.setEntry(j, i, corr);
}
outMatrix.setEntry(i, i, 1d);
}
return outMatrix;
}
/**
* Computes the Pearson's product-moment correlation coefficient between the two arrays.
*
* </p>Throws IllegalArgumentException if the arrays do not have the same length
* or their common length is less than 2</p>
*
* @param xArray first data array
* @param yArray second data array
* @return Returns Pearson's correlation coefficient for the two arrays
* @throws IllegalArgumentException if the arrays lengths do not match or
* there is insufficient data
*/
public double correlation(final double[] xArray, final double[] yArray) throws IllegalArgumentException {
SimpleRegression regression = new SimpleRegression();
if(xArray.length == yArray.length && xArray.length > 1) {
for(int i=0; i<xArray.length; i++) {
regression.addData(xArray[i], yArray[i]);
}
return regression.getR();
}
else {
throw MathRuntimeException.createIllegalArgumentException(
"Invalid array dimensions. xArray has size {0}; yArray has {1} elements",
new Object[] {xArray.length, yArray.length});
}
}
/**
* Derives a correlation matrix from a covariance matrix.
*
* <p>Uses the formula <br/>
* <code>r(X,Y) = cov(X,Y)/s(X)s(Y)</code> where
* <code>r(&middot,&middot;)</code> is the correlation coefficient and
* <code>s(&middot;)</code> means standard deviation.</p>
*
* @param covarianceMatrix the covariance matrix
* @return correlation matrix
*/
public RealMatrix covarianceToCorrelation(RealMatrix covarianceMatrix) {
int nVars = covarianceMatrix.getColumnDimension();
RealMatrix outMatrix = new DenseRealMatrix(nVars, nVars);
for (int i = 0; i < nVars; i++) {
double sigma = Math.sqrt(covarianceMatrix.getEntry(i, i));
outMatrix.setEntry(i, i, 1d);
for (int j = 0; j < i; j++) {
double entry = covarianceMatrix.getEntry(i, j) /
(sigma * Math.sqrt(covarianceMatrix.getEntry(j, j)));
outMatrix.setEntry(i, j, entry);
outMatrix.setEntry(j, i, entry);
}
}
return outMatrix;
}
/**
* Throws IllegalArgumentException of the matrix does not have at least
* two columns and two rows
*
* @param matrix matrix to check for sufficiency
*/
private void checkSufficientData(final RealMatrix matrix) {
int nRows = matrix.getRowDimension();
int nCols = matrix.getColumnDimension();
if (nRows < 2 || nCols < 2) {
throw MathRuntimeException.createIllegalArgumentException(
"Insufficient data: only {0} rows and {1} columns.",
new Object[]{nRows, nCols});
}
}
}

View File

@ -39,6 +39,10 @@ The <action> type attribute can be add,update,fix,remove.
</properties>
<body>
<release version="2.0" date="TBD" description="TBD">
<action dev="psteitz" type="add" issue="MATH-114" due-to="John Gant">
Added PearsonsCorrelation class to compute correlation matrices, standard
errors and p-values for correlation coefficients.
</action>
<action dev="psteitz" type="add" issue="MATH-114">
Added Covariance class to compute variance-covariance matrices in new
correlation package.

View File

@ -0,0 +1,185 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#------------------------------------------------------------------------------
# R source file to validate Pearson's correlation tests in
# org.apache.commons.math.stat.correlation.PearsonsCorrelationTest
#
# To run the test, install R, put this file and testFunctions
# into the same directory, launch R from this directory and then enter
# source("<name-of-this-file>")
#
#------------------------------------------------------------------------------
tol <- 1E-9 # error tolerance for tests
#------------------------------------------------------------------------------
# Function definitions
source("testFunctions") # utility test functions
options(digits=16) # override number of digits displayed
# function to verify correlation computations
verifyCorrelation <- function(matrix, expectedCorrelation, name) {
correlation <- cor(matrix)
output <- c("Correlation matrix test dataset = ", name)
if (assertEquals(expectedCorrelation, correlation,tol,"Correlations")) {
displayPadded(output, SUCCEEDED, WIDTH)
} else {
displayPadded(output, FAILED, WIDTH)
}
}
# function to verify p-values
verifyPValues <- function(matrix, pValues, name) {
dimension <- dim(matrix)[2]
corValues <- matrix(nrow=dimension,ncol=dimension)
expectedValues <- matrix(nrow=dimension,ncol=dimension)
for (i in 2:dimension) {
for (j in 1:(i-1)) {
corValues[i,j]<-cor.test(matrix[,i], matrix[,j])$p.value
corValues[j,i]<-corValues[i,j]
}
}
for (i in 1:dimension) {
corValues[i,i] <- 1
expectedValues[i,i] <- 1
}
ptr <- 1
for (i in 2:dimension) {
for (j in 1:(i-1)) {
expectedValues[i,j] <- pValues[ptr]
expectedValues[j,i] <- expectedValues[i,j]
ptr <- ptr + 1
}
}
output <- c("Correlation p-values test dataset = ", name)
if (assertEquals(expectedValues, corValues,tol,"p-values")) {
displayPadded(output, SUCCEEDED, WIDTH)
} else {
displayPadded(output, FAILED, WIDTH)
}
}
#--------------------------------------------------------------------------
cat("Correlation test cases\n")
# Longley
longley <- matrix(c(60323,83.0,234289,2356,1590,107608,1947,
61122,88.5,259426,2325,1456,108632,1948,
60171,88.2,258054,3682,1616,109773,1949,
61187,89.5,284599,3351,1650,110929,1950,
63221,96.2,328975,2099,3099,112075,1951,
63639,98.1,346999,1932,3594,113270,1952,
64989,99.0,365385,1870,3547,115094,1953,
63761,100.0,363112,3578,3350,116219,1954,
66019,101.2,397469,2904,3048,117388,1955,
67857,104.6,419180,2822,2857,118734,1956,
68169,108.4,442769,2936,2798,120445,1957,
66513,110.8,444546,4681,2637,121950,1958,
68655,112.6,482704,3813,2552,123366,1959,
69564,114.2,502601,3931,2514,125368,1960,
69331,115.7,518173,4806,2572,127852,1961,
70551,116.9,554894,4007,2827,130081,1962),
nrow = 16, ncol = 7, byrow = TRUE)
expectedCorrelation <- matrix(c(
1.000000000000000, 0.9708985250610560, 0.9835516111796693, 0.5024980838759942,
0.4573073999764817, 0.960390571594376, 0.9713294591921188,
0.970898525061056, 1.0000000000000000, 0.9915891780247822, 0.6206333925590966,
0.4647441876006747, 0.979163432977498, 0.9911491900672053,
0.983551611179669, 0.9915891780247822, 1.0000000000000000, 0.6042609398895580,
0.4464367918926265, 0.991090069458478, 0.9952734837647849,
0.502498083875994, 0.6206333925590966, 0.6042609398895580, 1.0000000000000000,
-0.1774206295018783, 0.686551516365312, 0.6682566045621746,
0.457307399976482, 0.4647441876006747, 0.4464367918926265, -0.1774206295018783,
1.0000000000000000, 0.364416267189032, 0.4172451498349454,
0.960390571594376, 0.9791634329774981, 0.9910900694584777, 0.6865515163653120,
0.3644162671890320, 1.000000000000000, 0.9939528462329257,
0.971329459192119, 0.9911491900672053, 0.9952734837647849, 0.6682566045621746,
0.4172451498349454, 0.993952846232926, 1.0000000000000000),
nrow = 7, ncol = 7, byrow = TRUE)
verifyCorrelation(longley, expectedCorrelation, "longley")
expectedPValues <- c(
4.38904690369668e-10,
8.36353208910623e-12, 7.8159700933611e-14,
0.0472894097790304, 0.01030636128354301, 0.01316878049026582,
0.0749178049642416, 0.06971758330341182, 0.0830166169296545, 0.510948586323452,
3.693245043123738e-09, 4.327782576751815e-11, 1.167954621905665e-13, 0.00331028281967516, 0.1652293725106684,
3.95834476307755e-10, 1.114663916723657e-13, 1.332267629550188e-15, 0.00466039138541463, 0.1078477071581498, 7.771561172376096e-15)
verifyPValues(longley, expectedPValues, "longley")
# Swiss Fertility
fertility <- matrix(c(80.2,17.0,15,12,9.96,
83.1,45.1,6,9,84.84,
92.5,39.7,5,5,93.40,
85.8,36.5,12,7,33.77,
76.9,43.5,17,15,5.16,
76.1,35.3,9,7,90.57,
83.8,70.2,16,7,92.85,
92.4,67.8,14,8,97.16,
82.4,53.3,12,7,97.67,
82.9,45.2,16,13,91.38,
87.1,64.5,14,6,98.61,
64.1,62.0,21,12,8.52,
66.9,67.5,14,7,2.27,
68.9,60.7,19,12,4.43,
61.7,69.3,22,5,2.82,
68.3,72.6,18,2,24.20,
71.7,34.0,17,8,3.30,
55.7,19.4,26,28,12.11,
54.3,15.2,31,20,2.15,
65.1,73.0,19,9,2.84,
65.5,59.8,22,10,5.23,
65.0,55.1,14,3,4.52,
56.6,50.9,22,12,15.14,
57.4,54.1,20,6,4.20,
72.5,71.2,12,1,2.40,
74.2,58.1,14,8,5.23,
72.0,63.5,6,3,2.56,
60.5,60.8,16,10,7.72,
58.3,26.8,25,19,18.46,
65.4,49.5,15,8,6.10,
75.5,85.9,3,2,99.71,
69.3,84.9,7,6,99.68,
77.3,89.7,5,2,100.00,
70.5,78.2,12,6,98.96,
79.4,64.9,7,3,98.22,
65.0,75.9,9,9,99.06,
92.2,84.6,3,3,99.46,
79.3,63.1,13,13,96.83,
70.4,38.4,26,12,5.62,
65.7,7.7,29,11,13.79,
72.7,16.7,22,13,11.22,
64.4,17.6,35,32,16.92,
77.6,37.6,15,7,4.97,
67.6,18.7,25,7,8.65,
35.0,1.2,37,53,42.34,
44.7,46.6,16,29,50.43,
42.8,27.7,22,29,58.33),
nrow = 47, ncol = 5, byrow = TRUE)
expectedCorrelation <- matrix(c(
1.0000000000000000, 0.3530791836199747, -0.6458827064572875, -0.6637888570350691, 0.4636847006517939,
0.3530791836199747, 1.0000000000000000,-0.6865422086171366, -0.6395225189483201, 0.4010950530487398,
-0.6458827064572875, -0.6865422086171366, 1.0000000000000000, 0.6984152962884830, -0.5727418060641666,
-0.6637888570350691, -0.6395225189483201, 0.6984152962884830, 1.0000000000000000, -0.1538589170909148,
0.4636847006517939, 0.4010950530487398, -0.5727418060641666, -0.1538589170909148, 1.0000000000000000),
nrow = 5, ncol = 5, byrow = TRUE)
verifyCorrelation(fertility, expectedCorrelation, "swiss fertility")
displayDashes(WIDTH)

View File

@ -50,6 +50,9 @@ source("multipleOLSRegressionTestCases")
# covariance
source("covarianceTestCases")
# correlation
source("correlationTestCases")
#------------------------------------------------------------------------------
# if output has been diverted, change it back
if (sink.number()) {

View File

@ -0,0 +1,274 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.stat.correlation;
import org.apache.commons.math.TestUtils;
import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.distribution.TDistributionImpl;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.DenseRealMatrix;
import junit.framework.TestCase;
public class PearsonsCorrelationTest extends TestCase {
protected final double[] longleyData = new double[] {
60323,83.0,234289,2356,1590,107608,1947,
61122,88.5,259426,2325,1456,108632,1948,
60171,88.2,258054,3682,1616,109773,1949,
61187,89.5,284599,3351,1650,110929,1950,
63221,96.2,328975,2099,3099,112075,1951,
63639,98.1,346999,1932,3594,113270,1952,
64989,99.0,365385,1870,3547,115094,1953,
63761,100.0,363112,3578,3350,116219,1954,
66019,101.2,397469,2904,3048,117388,1955,
67857,104.6,419180,2822,2857,118734,1956,
68169,108.4,442769,2936,2798,120445,1957,
66513,110.8,444546,4681,2637,121950,1958,
68655,112.6,482704,3813,2552,123366,1959,
69564,114.2,502601,3931,2514,125368,1960,
69331,115.7,518173,4806,2572,127852,1961,
70551,116.9,554894,4007,2827,130081,1962
};
protected final double[] swissData = new double[] {
80.2,17.0,15,12,9.96,
83.1,45.1,6,9,84.84,
92.5,39.7,5,5,93.40,
85.8,36.5,12,7,33.77,
76.9,43.5,17,15,5.16,
76.1,35.3,9,7,90.57,
83.8,70.2,16,7,92.85,
92.4,67.8,14,8,97.16,
82.4,53.3,12,7,97.67,
82.9,45.2,16,13,91.38,
87.1,64.5,14,6,98.61,
64.1,62.0,21,12,8.52,
66.9,67.5,14,7,2.27,
68.9,60.7,19,12,4.43,
61.7,69.3,22,5,2.82,
68.3,72.6,18,2,24.20,
71.7,34.0,17,8,3.30,
55.7,19.4,26,28,12.11,
54.3,15.2,31,20,2.15,
65.1,73.0,19,9,2.84,
65.5,59.8,22,10,5.23,
65.0,55.1,14,3,4.52,
56.6,50.9,22,12,15.14,
57.4,54.1,20,6,4.20,
72.5,71.2,12,1,2.40,
74.2,58.1,14,8,5.23,
72.0,63.5,6,3,2.56,
60.5,60.8,16,10,7.72,
58.3,26.8,25,19,18.46,
65.4,49.5,15,8,6.10,
75.5,85.9,3,2,99.71,
69.3,84.9,7,6,99.68,
77.3,89.7,5,2,100.00,
70.5,78.2,12,6,98.96,
79.4,64.9,7,3,98.22,
65.0,75.9,9,9,99.06,
92.2,84.6,3,3,99.46,
79.3,63.1,13,13,96.83,
70.4,38.4,26,12,5.62,
65.7,7.7,29,11,13.79,
72.7,16.7,22,13,11.22,
64.4,17.6,35,32,16.92,
77.6,37.6,15,7,4.97,
67.6,18.7,25,7,8.65,
35.0,1.2,37,53,42.34,
44.7,46.6,16,29,50.43,
42.8,27.7,22,29,58.33
};
/**
* Test Longley dataset against R.
*/
public void testLongly() throws Exception {
RealMatrix matrix = createRealMatrix(longleyData, 16, 7);
PearsonsCorrelation corrInstance = new PearsonsCorrelation(matrix);
RealMatrix correlationMatrix = corrInstance.getCorrelationMatrix();
double[] rData = new double[] {
1.000000000000000, 0.9708985250610560, 0.9835516111796693, 0.5024980838759942,
0.4573073999764817, 0.960390571594376, 0.9713294591921188,
0.970898525061056, 1.0000000000000000, 0.9915891780247822, 0.6206333925590966,
0.4647441876006747, 0.979163432977498, 0.9911491900672053,
0.983551611179669, 0.9915891780247822, 1.0000000000000000, 0.6042609398895580,
0.4464367918926265, 0.991090069458478, 0.9952734837647849,
0.502498083875994, 0.6206333925590966, 0.6042609398895580, 1.0000000000000000,
-0.1774206295018783, 0.686551516365312, 0.6682566045621746,
0.457307399976482, 0.4647441876006747, 0.4464367918926265, -0.1774206295018783,
1.0000000000000000, 0.364416267189032, 0.4172451498349454,
0.960390571594376, 0.9791634329774981, 0.9910900694584777, 0.6865515163653120,
0.3644162671890320, 1.000000000000000, 0.9939528462329257,
0.971329459192119, 0.9911491900672053, 0.9952734837647849, 0.6682566045621746,
0.4172451498349454, 0.993952846232926, 1.0000000000000000
};
TestUtils.assertEquals("correlation matrix", createRealMatrix(rData, 7, 7), correlationMatrix, 10E-15);
double[] rPvalues = new double[] {
4.38904690369668e-10,
8.36353208910623e-12, 7.8159700933611e-14,
0.0472894097790304, 0.01030636128354301, 0.01316878049026582,
0.0749178049642416, 0.06971758330341182, 0.0830166169296545, 0.510948586323452,
3.693245043123738e-09, 4.327782576751815e-11, 1.167954621905665e-13, 0.00331028281967516, 0.1652293725106684,
3.95834476307755e-10, 1.114663916723657e-13, 1.332267629550188e-15, 0.00466039138541463, 0.1078477071581498, 7.771561172376096e-15
};
RealMatrix rPMatrix = createLowerTriangularRealMatrix(rPvalues, 7);
fillUpper(rPMatrix, 0d);
TestUtils.assertEquals("correlation p values", rPMatrix, corrInstance.getCorrelationPValues(), 10E-15);
}
/**
* Test R Swiss fertility dataset against R.
*/
public void testSwissFertility() throws Exception {
RealMatrix matrix = createRealMatrix(swissData, 47, 5);
PearsonsCorrelation corrInstance = new PearsonsCorrelation(matrix);
RealMatrix correlationMatrix = corrInstance.getCorrelationMatrix();
double[] rData = new double[] {
1.0000000000000000, 0.3530791836199747, -0.6458827064572875, -0.6637888570350691, 0.4636847006517939,
0.3530791836199747, 1.0000000000000000,-0.6865422086171366, -0.6395225189483201, 0.4010950530487398,
-0.6458827064572875, -0.6865422086171366, 1.0000000000000000, 0.6984152962884830, -0.5727418060641666,
-0.6637888570350691, -0.6395225189483201, 0.6984152962884830, 1.0000000000000000, -0.1538589170909148,
0.4636847006517939, 0.4010950530487398, -0.5727418060641666, -0.1538589170909148, 1.0000000000000000
};
TestUtils.assertEquals("correlation matrix", createRealMatrix(rData, 5, 5), correlationMatrix, 10E-15);
double[] rPvalues = new double[] {
0.01491720061472623,
9.45043734069043e-07, 9.95151527133974e-08,
3.658616965962355e-07, 1.304590105694471e-06, 4.811397236181847e-08,
0.001028523190118147, 0.005204433539191644, 2.588307925380906e-05, 0.301807756132683
};
RealMatrix rPMatrix = createLowerTriangularRealMatrix(rPvalues, 5);
fillUpper(rPMatrix, 0d);
TestUtils.assertEquals("correlation p values", rPMatrix, corrInstance.getCorrelationPValues(), 10E-15);
}
/**
* Constant column
*/
public void testConstant() {
double[] noVariance = new double[] {1, 1, 1, 1};
double[] values = new double[] {1, 2, 3, 4};
assertTrue(Double.isNaN(new PearsonsCorrelation().correlation(noVariance, values)));
assertTrue(Double.isNaN(new PearsonsCorrelation().correlation(noVariance, values)));
}
/**
* Insufficient data
*/
public void testInsufficientData() {
double[] one = new double[] {1};
double[] two = new double[] {2};
try {
new PearsonsCorrelation().correlation(one, two);
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// Expected
}
RealMatrix matrix = new DenseRealMatrix(new double[][] {{0},{1}});
try {
new PearsonsCorrelation(matrix);
fail("Expecting IllegalArgumentException");
} catch (IllegalArgumentException ex) {
// Expected
}
}
/**
* Verify that direct t-tests using standard error estimates are consistent
* with reported p-values
*/
public void testStdErrorConsistency() throws Exception {
TDistribution tDistribution = new TDistributionImpl(45);
RealMatrix matrix = createRealMatrix(swissData, 47, 5);
PearsonsCorrelation corrInstance = new PearsonsCorrelation(matrix);
RealMatrix rValues = corrInstance.getCorrelationMatrix();
RealMatrix pValues = corrInstance.getCorrelationPValues();
RealMatrix stdErrors = corrInstance.getCorrelationStandardErrors();
for (int i = 0; i < 5; i++) {
for (int j = 0; j < i; j++) {
double t = Math.abs(rValues.getEntry(i, j)) / stdErrors.getEntry(i, j);
double p = 2 * (1 - tDistribution.cumulativeProbability(t));
assertEquals(p, pValues.getEntry(i, j), 10E-15);
}
}
}
/**
* Verify that creating correlation from covariance gives same results as
* direct computation from the original matrix
*/
public void testCovarianceConsistency() throws Exception {
RealMatrix matrix = createRealMatrix(longleyData, 16, 7);
PearsonsCorrelation corrInstance = new PearsonsCorrelation(matrix);
Covariance covInstance = new Covariance(matrix);
PearsonsCorrelation corrFromCovInstance = new PearsonsCorrelation(covInstance);
TestUtils.assertEquals("correlation values", corrInstance.getCorrelationMatrix(),
corrFromCovInstance.getCorrelationMatrix(), 10E-15);
TestUtils.assertEquals("p values", corrInstance.getCorrelationPValues(),
corrFromCovInstance.getCorrelationPValues(), 10E-15);
TestUtils.assertEquals("standard errors", corrInstance.getCorrelationStandardErrors(),
corrFromCovInstance.getCorrelationStandardErrors(), 10E-15);
PearsonsCorrelation corrFromCovInstance2 =
new PearsonsCorrelation(covInstance.getCovarianceMatrix(), 16);
TestUtils.assertEquals("correlation values", corrInstance.getCorrelationMatrix(),
corrFromCovInstance2.getCorrelationMatrix(), 10E-15);
TestUtils.assertEquals("p values", corrInstance.getCorrelationPValues(),
corrFromCovInstance2.getCorrelationPValues(), 10E-15);
TestUtils.assertEquals("standard errors", corrInstance.getCorrelationStandardErrors(),
corrFromCovInstance2.getCorrelationStandardErrors(), 10E-15);
}
protected RealMatrix createRealMatrix(double[] data, int nRows, int nCols) {
double[][] matrixData = new double[nRows][nCols];
int ptr = 0;
for (int i = 0; i < nRows; i++) {
System.arraycopy(data, ptr, matrixData[i], 0, nCols);
ptr += nCols;
}
return new DenseRealMatrix(matrixData);
}
protected RealMatrix createLowerTriangularRealMatrix(double[] data, int dimension) {
int ptr = 0;
RealMatrix result = new DenseRealMatrix(dimension, dimension);
for (int i = 1; i < dimension; i++) {
for (int j = 0; j < i; j++) {
result.setEntry(i, j, data[ptr]);
ptr++;
}
}
return result;
}
protected void fillUpper(RealMatrix matrix, double diagonalValue) {
int dimension = matrix.getColumnDimension();
for (int i = 0; i < dimension; i++) {
matrix.setEntry(i, i, diagonalValue);
for (int j = i+1; j < dimension; j++) {
matrix.setEntry(i, j, matrix.getEntry(j, i));
}
}
}
}