added the two methods getCurrentStepStart and getCurrentStepsize to interface FirstOrderIntegrator allowing ODE problems to retrieve the current step start and size during integration for each step trial (i.e. even before the step is accepted)
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@580753 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e92a93d217
commit
67b86d4ccf
|
@ -75,6 +75,8 @@ public abstract class AdaptiveStepsizeIntegrator
|
|||
|
||||
switchesHandler = new SwitchingFunctionsHandler();
|
||||
|
||||
resetInternalState();
|
||||
|
||||
}
|
||||
|
||||
/** Build an integrator with the given stepsize bounds.
|
||||
|
@ -104,6 +106,8 @@ public abstract class AdaptiveStepsizeIntegrator
|
|||
|
||||
switchesHandler = new SwitchingFunctionsHandler();
|
||||
|
||||
resetInternalState();
|
||||
|
||||
}
|
||||
|
||||
/** Set the initial step size.
|
||||
|
@ -324,6 +328,20 @@ public abstract class AdaptiveStepsizeIntegrator
|
|||
double t, double[] y)
|
||||
throws DerivativeException, IntegratorException;
|
||||
|
||||
public double getCurrentStepStart() {
|
||||
return stepStart;
|
||||
}
|
||||
|
||||
public double getCurrentStepsize() {
|
||||
return stepSize;
|
||||
}
|
||||
|
||||
/** Reset internal state to dummy values. */
|
||||
protected void resetInternalState() {
|
||||
stepStart = Double.NaN;
|
||||
stepSize = Math.sqrt(minStep * maxStep);
|
||||
}
|
||||
|
||||
/** Get the minimal step.
|
||||
* @return minimal step
|
||||
*/
|
||||
|
@ -365,4 +383,10 @@ public abstract class AdaptiveStepsizeIntegrator
|
|||
/** Switching functions handler. */
|
||||
protected SwitchingFunctionsHandler switchesHandler;
|
||||
|
||||
/** Current step start time. */
|
||||
protected double stepStart;
|
||||
|
||||
/** Current stepsize. */
|
||||
protected double stepSize;
|
||||
|
||||
}
|
||||
|
|
|
@ -63,12 +63,16 @@ public interface FirstOrderIntegrator {
|
|||
double maxCheckInterval,
|
||||
double convergence);
|
||||
|
||||
/** Integrate the differential equations up to the given time
|
||||
/** Integrate the differential equations up to the given time.
|
||||
* <p>This method solves an Initial Value Problem (IVP).</p>
|
||||
* <p>Since this method stores some internal state variables made
|
||||
* available in its public interface during integration ({@link
|
||||
* #getCurrentStepsize()}), it is <em>not</em> thread-safe.</p>
|
||||
* @param equations differential equations to integrate
|
||||
* @param t0 initial time
|
||||
* @param y0 initial value of the state vector at t0
|
||||
* @param t target time for the integration
|
||||
* (can be set to a value smaller thant <code>t0</code> for backward integration)
|
||||
* (can be set to a value smaller than <code>t0</code> for backward integration)
|
||||
* @param y placeholder where to put the state vector at each successful
|
||||
* step (and hence at the end of integration), can be the same object as y0
|
||||
* @throws IntegratorException if the integrator cannot perform integration
|
||||
|
@ -80,4 +84,26 @@ public interface FirstOrderIntegrator {
|
|||
double t, double[] y)
|
||||
throws DerivativeException, IntegratorException;
|
||||
|
||||
/** Get the current value of the step start time t<sub>i</sub>.
|
||||
* <p>This method can be called during integration (typically by
|
||||
* the object implementing the {@link FirstOrderDifferentialEquations
|
||||
* differential equations} problem) if the value of the current step that
|
||||
* is attempted is needed.</p>
|
||||
* <p>The result is undefined if the method is called outside of
|
||||
* calls to {@link #integrate}</p>
|
||||
* @return current value of the step start time t<sub>i</sub>
|
||||
*/
|
||||
public double getCurrentStepStart();
|
||||
|
||||
/** Get the current value of the integration stepsize.
|
||||
* <p>This method can be called during integration (typically by
|
||||
* the object implementing the {@link FirstOrderDifferentialEquations
|
||||
* differential equations} problem) if the value of the current stepsize
|
||||
* that is tried is needed.</p>
|
||||
* <p>The result is undefined if the method is called outside of
|
||||
* calls to {@link #integrate}</p>
|
||||
* @return current value of the stepsize
|
||||
*/
|
||||
public double getCurrentStepsize();
|
||||
|
||||
}
|
||||
|
|
|
@ -579,7 +579,7 @@ public class GraggBulirschStoerIntegrator
|
|||
}
|
||||
interpolator.storeTime(t0);
|
||||
|
||||
double currentT = t0;
|
||||
stepStart = t0;
|
||||
double hNew = 0;
|
||||
double maxError = Double.MAX_VALUE;
|
||||
boolean previousRejected = false;
|
||||
|
@ -591,7 +591,6 @@ public class GraggBulirschStoerIntegrator
|
|||
costPerTimeUnit[0] = 0;
|
||||
while (! lastStep) {
|
||||
|
||||
double h;
|
||||
double error;
|
||||
boolean reject = false;
|
||||
|
||||
|
@ -601,14 +600,14 @@ public class GraggBulirschStoerIntegrator
|
|||
|
||||
// first evaluation, at the beginning of the step
|
||||
if (! firstStepAlreadyComputed) {
|
||||
equations.computeDerivatives(currentT, y, yDot0);
|
||||
equations.computeDerivatives(stepStart, y, yDot0);
|
||||
}
|
||||
|
||||
if (firstTime) {
|
||||
|
||||
hNew = initializeStep(equations, forward,
|
||||
2 * targetIter + 1, scale,
|
||||
currentT, y, yDot0, yTmp, yTmpDot);
|
||||
stepStart, y, yDot0, yTmp, yTmpDot);
|
||||
|
||||
if (! forward) {
|
||||
hNew = -hNew;
|
||||
|
@ -620,14 +619,14 @@ public class GraggBulirschStoerIntegrator
|
|||
|
||||
}
|
||||
|
||||
h = hNew;
|
||||
stepSize = hNew;
|
||||
|
||||
// step adjustment near bounds
|
||||
if ((forward && (currentT + h > t))
|
||||
|| ((! forward) && (currentT + h < t))) {
|
||||
h = t - currentT;
|
||||
if ((forward && (stepStart + stepSize > t))
|
||||
|| ((! forward) && (stepStart + stepSize < t))) {
|
||||
stepSize = t - stepStart;
|
||||
}
|
||||
double nextT = currentT + h;
|
||||
double nextT = stepStart + stepSize;
|
||||
lastStep = forward ? (nextT >= t) : (nextT <= t);
|
||||
|
||||
// iterate over several substep sizes
|
||||
|
@ -637,13 +636,13 @@ public class GraggBulirschStoerIntegrator
|
|||
++k;
|
||||
|
||||
// modified midpoint integration with the current substep
|
||||
if ( ! tryStep(equations, currentT, y, h, k, scale, fk[k],
|
||||
if ( ! tryStep(equations, stepStart, y, stepSize, k, scale, fk[k],
|
||||
(k == 0) ? yMidDots[0] : diagonal[k-1],
|
||||
(k == 0) ? y1 : y1Diag[k-1],
|
||||
yTmp)) {
|
||||
|
||||
// the stability check failed, we reduce the global step
|
||||
hNew = Math.abs(filterStep(h * stabilityReduction, false));
|
||||
hNew = Math.abs(filterStep(stepSize * stabilityReduction, false));
|
||||
reject = true;
|
||||
loop = false;
|
||||
|
||||
|
@ -667,7 +666,7 @@ public class GraggBulirschStoerIntegrator
|
|||
|
||||
if ((error > 1.0e15) || ((k > 1) && (error > maxError))) {
|
||||
// error is too big, we reduce the global step
|
||||
hNew = Math.abs(filterStep(h * stabilityReduction, false));
|
||||
hNew = Math.abs(filterStep(stepSize * stabilityReduction, false));
|
||||
reject = true;
|
||||
loop = false;
|
||||
} else {
|
||||
|
@ -679,7 +678,7 @@ public class GraggBulirschStoerIntegrator
|
|||
double fac = stepControl2 / Math.pow(error / stepControl1, exp);
|
||||
double pow = Math.pow(stepControl3, exp);
|
||||
fac = Math.max(pow / stepControl4, Math.min(1 / pow, fac));
|
||||
optimalStep[k] = Math.abs(filterStep(h * fac, true));
|
||||
optimalStep[k] = Math.abs(filterStep(stepSize * fac, true));
|
||||
costPerTimeUnit[k] = costPerStep[k] / optimalStep[k];
|
||||
|
||||
// check convergence
|
||||
|
@ -775,7 +774,7 @@ public class GraggBulirschStoerIntegrator
|
|||
}
|
||||
|
||||
// derivative at end of step
|
||||
equations.computeDerivatives(currentT + h, y1, yDot1);
|
||||
equations.computeDerivatives(stepStart + stepSize, y1, yDot1);
|
||||
|
||||
int mu = 2 * k - mudif + 3;
|
||||
|
||||
|
@ -797,7 +796,7 @@ public class GraggBulirschStoerIntegrator
|
|||
extrapolate(l2, j, diagonal, yMidDots[l+1]);
|
||||
}
|
||||
for (int i = 0; i < y0.length; ++i) {
|
||||
yMidDots[l+1][i] *= h;
|
||||
yMidDots[l+1][i] *= stepSize;
|
||||
}
|
||||
|
||||
// compute centered differences to evaluate next derivatives
|
||||
|
@ -816,13 +815,13 @@ public class GraggBulirschStoerIntegrator
|
|||
// estimate the dense output coefficients
|
||||
GraggBulirschStoerStepInterpolator gbsInterpolator
|
||||
= (GraggBulirschStoerStepInterpolator) interpolator;
|
||||
gbsInterpolator.computeCoefficients(mu, h);
|
||||
gbsInterpolator.computeCoefficients(mu, stepSize);
|
||||
|
||||
if (useInterpolationError) {
|
||||
// use the interpolation error to limit stepsize
|
||||
double interpError = gbsInterpolator.estimateError(scale);
|
||||
hInt = Math.abs(h / Math.max(Math.pow(interpError, 1.0 / (mu+4)),
|
||||
0.01));
|
||||
hInt = Math.abs(stepSize / Math.max(Math.pow(interpError, 1.0 / (mu+4)),
|
||||
0.01));
|
||||
if (interpError > 10.0) {
|
||||
hNew = hInt;
|
||||
reject = true;
|
||||
|
@ -831,10 +830,10 @@ public class GraggBulirschStoerIntegrator
|
|||
|
||||
// Switching functions handling
|
||||
if (!reject) {
|
||||
interpolator.storeTime(currentT + h);
|
||||
interpolator.storeTime(stepStart + stepSize);
|
||||
if (switchesHandler.evaluateStep(interpolator)) {
|
||||
reject = true;
|
||||
hNew = Math.abs(switchesHandler.getEventTime() - currentT);
|
||||
hNew = Math.abs(switchesHandler.getEventTime() - stepStart);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -851,19 +850,19 @@ public class GraggBulirschStoerIntegrator
|
|||
if (! reject) {
|
||||
|
||||
// store end of step state
|
||||
currentT += h;
|
||||
stepStart += stepSize;
|
||||
System.arraycopy(y1, 0, y, 0, y0.length);
|
||||
|
||||
switchesHandler.stepAccepted(currentT, y);
|
||||
switchesHandler.stepAccepted(stepStart, y);
|
||||
if (switchesHandler.stop()) {
|
||||
lastStep = true;
|
||||
}
|
||||
|
||||
// provide the step data to the step handler
|
||||
interpolator.storeTime(currentT);
|
||||
interpolator.storeTime(stepStart);
|
||||
handler.handleStep(interpolator, lastStep);
|
||||
|
||||
if (switchesHandler.reset(currentT, y) && ! lastStep) {
|
||||
if (switchesHandler.reset(stepStart, y) && ! lastStep) {
|
||||
// some switching function has triggered changes that
|
||||
// invalidate the derivatives, we need to recompute them
|
||||
firstStepAlreadyComputed = false;
|
||||
|
@ -897,7 +896,7 @@ public class GraggBulirschStoerIntegrator
|
|||
// after a rejected step neither order nor stepsize
|
||||
// should increase
|
||||
targetIter = Math.min(optimalIter, k);
|
||||
hNew = Math.min(Math.abs(h), optimalStep[targetIter]);
|
||||
hNew = Math.min(Math.abs(stepSize), optimalStep[targetIter]);
|
||||
} else {
|
||||
// stepsize control
|
||||
if (optimalIter <= k) {
|
||||
|
|
|
@ -187,7 +187,7 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
}
|
||||
interpolator.storeTime(t0);
|
||||
|
||||
double currentT = t0;
|
||||
stepStart = t0;
|
||||
double hNew = 0;
|
||||
boolean firstTime = true;
|
||||
boolean lastStep;
|
||||
|
@ -196,13 +196,12 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
|
||||
interpolator.shift();
|
||||
|
||||
double h = 0;
|
||||
double error = 0;
|
||||
for (boolean loop = true; loop;) {
|
||||
|
||||
if (firstTime || !fsal) {
|
||||
// first stage
|
||||
equations.computeDerivatives(currentT, y, yDotK[0]);
|
||||
equations.computeDerivatives(stepStart, y, yDotK[0]);
|
||||
}
|
||||
|
||||
if (firstTime) {
|
||||
|
@ -216,16 +215,16 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
}
|
||||
}
|
||||
hNew = initializeStep(equations, forward, getOrder(), scale,
|
||||
currentT, y, yDotK[0], yTmp, yDotK[1]);
|
||||
stepStart, y, yDotK[0], yTmp, yDotK[1]);
|
||||
firstTime = false;
|
||||
}
|
||||
|
||||
h = hNew;
|
||||
stepSize = hNew;
|
||||
|
||||
// step adjustment near bounds
|
||||
if ((forward && (currentT + h > t))
|
||||
|| ((! forward) && (currentT + h < t))) {
|
||||
h = t - currentT;
|
||||
if ((forward && (stepStart + stepSize > t))
|
||||
|| ((! forward) && (stepStart + stepSize < t))) {
|
||||
stepSize = t - stepStart;
|
||||
}
|
||||
|
||||
// next stages
|
||||
|
@ -236,10 +235,10 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
for (int l = 1; l < k; ++l) {
|
||||
sum += a[k-1][l] * yDotK[l][j];
|
||||
}
|
||||
yTmp[j] = y[j] + h * sum;
|
||||
yTmp[j] = y[j] + stepSize * sum;
|
||||
}
|
||||
|
||||
equations.computeDerivatives(currentT + c[k-1] * h, yTmp, yDotK[k]);
|
||||
equations.computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);
|
||||
|
||||
}
|
||||
|
||||
|
@ -249,18 +248,18 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
for (int l = 1; l < stages; ++l) {
|
||||
sum += b[l] * yDotK[l][j];
|
||||
}
|
||||
yTmp[j] = y[j] + h * sum;
|
||||
yTmp[j] = y[j] + stepSize * sum;
|
||||
}
|
||||
|
||||
// estimate the error at the end of the step
|
||||
error = estimateError(yDotK, y, yTmp, h);
|
||||
error = estimateError(yDotK, y, yTmp, stepSize);
|
||||
if (error <= 1.0) {
|
||||
|
||||
// Switching functions handling
|
||||
interpolator.storeTime(currentT + h);
|
||||
interpolator.storeTime(stepStart + stepSize);
|
||||
if (switchesHandler.evaluateStep(interpolator)) {
|
||||
// reject the step to match exactly the next switch time
|
||||
hNew = switchesHandler.getEventTime() - currentT;
|
||||
hNew = switchesHandler.getEventTime() - stepStart;
|
||||
} else {
|
||||
// accept the step
|
||||
loop = false;
|
||||
|
@ -271,23 +270,23 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
double factor = Math.min(maxGrowth,
|
||||
Math.max(minReduction,
|
||||
safety * Math.pow(error, exp)));
|
||||
hNew = filterStep(h * factor, false);
|
||||
hNew = filterStep(stepSize * factor, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// the step has been accepted
|
||||
currentT += h;
|
||||
stepStart += stepSize;
|
||||
System.arraycopy(yTmp, 0, y, 0, y0.length);
|
||||
switchesHandler.stepAccepted(currentT, y);
|
||||
switchesHandler.stepAccepted(stepStart, y);
|
||||
if (switchesHandler.stop()) {
|
||||
lastStep = true;
|
||||
} else {
|
||||
lastStep = forward ? (currentT >= t) : (currentT <= t);
|
||||
lastStep = forward ? (stepStart >= t) : (stepStart <= t);
|
||||
}
|
||||
|
||||
// provide the step data to the step handler
|
||||
interpolator.storeTime(currentT);
|
||||
interpolator.storeTime(stepStart);
|
||||
handler.handleStep(interpolator, lastStep);
|
||||
|
||||
if (fsal) {
|
||||
|
@ -295,10 +294,10 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
System.arraycopy(yDotK[stages - 1], 0, yDotK[0], 0, y0.length);
|
||||
}
|
||||
|
||||
if (switchesHandler.reset(currentT, y) && ! lastStep) {
|
||||
if (switchesHandler.reset(stepStart, y) && ! lastStep) {
|
||||
// some switching function has triggered changes that
|
||||
// invalidate the derivatives, we need to recompute them
|
||||
equations.computeDerivatives(currentT, y, yDotK[0]);
|
||||
equations.computeDerivatives(stepStart, y, yDotK[0]);
|
||||
}
|
||||
|
||||
if (! lastStep) {
|
||||
|
@ -306,14 +305,16 @@ public abstract class RungeKuttaFehlbergIntegrator
|
|||
double factor = Math.min(maxGrowth,
|
||||
Math.max(minReduction,
|
||||
safety * Math.pow(error, exp)));
|
||||
double scaledH = h * factor;
|
||||
double nextT = currentT + scaledH;
|
||||
double scaledH = stepSize * factor;
|
||||
double nextT = stepStart + scaledH;
|
||||
boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
|
||||
hNew = filterStep(scaledH, nextIsLast);
|
||||
}
|
||||
|
||||
} while (! lastStep);
|
||||
|
||||
resetInternalState();
|
||||
|
||||
}
|
||||
|
||||
/** Get the minimal reduction factor for stepsize control.
|
||||
|
|
|
@ -78,6 +78,7 @@ public abstract class RungeKuttaIntegrator
|
|||
this.step = step;
|
||||
handler = DummyStepHandler.getInstance();
|
||||
switchesHandler = new SwitchingFunctionsHandler();
|
||||
resetInternalState();
|
||||
}
|
||||
|
||||
/** Get the name of the method.
|
||||
|
@ -180,11 +181,11 @@ public abstract class RungeKuttaIntegrator
|
|||
interpolator.storeTime(t0);
|
||||
|
||||
// recompute the step
|
||||
double currentT = t0;
|
||||
long nbStep = Math.max(1l, Math.abs(Math.round((t - t0) / step)));
|
||||
double h = (t - t0) / nbStep;
|
||||
boolean firstTime = true;
|
||||
boolean lastStep = false;
|
||||
stepStart = t0;
|
||||
stepSize = (t - t0) / nbStep;
|
||||
handler.reset();
|
||||
for (long i = 0; ! lastStep; ++i) {
|
||||
|
||||
|
@ -195,7 +196,7 @@ public abstract class RungeKuttaIntegrator
|
|||
|
||||
if (firstTime || !fsal) {
|
||||
// first stage
|
||||
equations.computeDerivatives(currentT, y, yDotK[0]);
|
||||
equations.computeDerivatives(stepStart, y, yDotK[0]);
|
||||
firstTime = false;
|
||||
}
|
||||
|
||||
|
@ -207,10 +208,10 @@ public abstract class RungeKuttaIntegrator
|
|||
for (int l = 1; l < k; ++l) {
|
||||
sum += a[k-1][l] * yDotK[l][j];
|
||||
}
|
||||
yTmp[j] = y[j] + h * sum;
|
||||
yTmp[j] = y[j] + stepSize * sum;
|
||||
}
|
||||
|
||||
equations.computeDerivatives(currentT + c[k-1] * h, yTmp, yDotK[k]);
|
||||
equations.computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);
|
||||
|
||||
}
|
||||
|
||||
|
@ -220,14 +221,14 @@ public abstract class RungeKuttaIntegrator
|
|||
for (int l = 1; l < stages; ++l) {
|
||||
sum += b[l] * yDotK[l][j];
|
||||
}
|
||||
yTmp[j] = y[j] + h * sum;
|
||||
yTmp[j] = y[j] + stepSize * sum;
|
||||
}
|
||||
|
||||
// Switching functions handling
|
||||
interpolator.storeTime(currentT + h);
|
||||
interpolator.storeTime(stepStart + stepSize);
|
||||
if (switchesHandler.evaluateStep(interpolator)) {
|
||||
needUpdate = true;
|
||||
h = switchesHandler.getEventTime() - currentT;
|
||||
stepSize = switchesHandler.getEventTime() - stepStart;
|
||||
} else {
|
||||
loop = false;
|
||||
}
|
||||
|
@ -235,9 +236,9 @@ public abstract class RungeKuttaIntegrator
|
|||
}
|
||||
|
||||
// the step has been accepted
|
||||
currentT += h;
|
||||
stepStart += stepSize;
|
||||
System.arraycopy(yTmp, 0, y, 0, y0.length);
|
||||
switchesHandler.stepAccepted(currentT, y);
|
||||
switchesHandler.stepAccepted(stepStart, y);
|
||||
if (switchesHandler.stop()) {
|
||||
lastStep = true;
|
||||
} else {
|
||||
|
@ -245,7 +246,7 @@ public abstract class RungeKuttaIntegrator
|
|||
}
|
||||
|
||||
// provide the step data to the step handler
|
||||
interpolator.storeTime(currentT);
|
||||
interpolator.storeTime(stepStart);
|
||||
handler.handleStep(interpolator, lastStep);
|
||||
|
||||
if (fsal) {
|
||||
|
@ -253,22 +254,38 @@ public abstract class RungeKuttaIntegrator
|
|||
System.arraycopy(yDotK[stages - 1], 0, yDotK[0], 0, y0.length);
|
||||
}
|
||||
|
||||
if (switchesHandler.reset(currentT, y) && ! lastStep) {
|
||||
if (switchesHandler.reset(stepStart, y) && ! lastStep) {
|
||||
// some switching function has triggered changes that
|
||||
// invalidate the derivatives, we need to recompute them
|
||||
equations.computeDerivatives(currentT, y, yDotK[0]);
|
||||
equations.computeDerivatives(stepStart, y, yDotK[0]);
|
||||
}
|
||||
|
||||
if (needUpdate) {
|
||||
// a switching function has changed the step
|
||||
// we need to recompute stepsize
|
||||
nbStep = Math.max(1l, Math.abs(Math.round((t - currentT) / step)));
|
||||
h = (t - currentT) / nbStep;
|
||||
nbStep = Math.max(1l, Math.abs(Math.round((t - stepStart) / step)));
|
||||
stepSize = (t - stepStart) / nbStep;
|
||||
i = -1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
resetInternalState();
|
||||
|
||||
}
|
||||
|
||||
public double getCurrentStepStart() {
|
||||
return stepStart;
|
||||
}
|
||||
|
||||
public double getCurrentStepsize() {
|
||||
return stepSize;
|
||||
}
|
||||
|
||||
/** Reset internal state to dummy values. */
|
||||
private void resetInternalState() {
|
||||
stepStart = Double.NaN;
|
||||
stepSize = Double.NaN;
|
||||
}
|
||||
|
||||
/** Indicator for <i>fsal</i> methods. */
|
||||
|
@ -295,4 +312,10 @@ public abstract class RungeKuttaIntegrator
|
|||
/** Switching functions handler. */
|
||||
protected SwitchingFunctionsHandler switchesHandler;
|
||||
|
||||
/** Current step start time. */
|
||||
private double stepStart;
|
||||
|
||||
/** Current stepsize. */
|
||||
private double stepSize;
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue