Added Hermite interpolator for ExtendFieldElement instances.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1449657 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2013-02-25 10:59:10 +00:00
parent 49d94ad78c
commit 684a87be70
3 changed files with 400 additions and 0 deletions

View File

@ -55,6 +55,9 @@ This is a minor release: It combines bug fixes and new features.
Changes to existing features were made in a backwards-compatible
way such as to allow drop-in replacement of the v3.1[.1] JAR file.
">
<action dev="luc" type="add" >
Added Hermite interpolator for ExtendFieldElement instances.
</action>
<action dev="luc" type="add" >
Added ExtendFieldElement interface to represent anything that is
real number like, implemented by both Decimal64, Dfp and DerivativeStructure.

View File

@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;
/** Polynomial interpolator using both sample values and sample derivatives.
* <p>
* The interpolation polynomials match all sample points, including both values
* and provided derivatives. There is one polynomial for each component of
* the values vector. All polynomials have the same degree. The degree of the
* polynomials depends on the number of points and number of derivatives at each
* point. For example the interpolation polynomials for n sample points without
* any derivatives all have degree n-1. The interpolation polynomials for n
* sample points with the two extreme points having value and first derivative
* and the remaining points having value only all have degree n+1. The
* interpolation polynomial for n sample points with value, first and second
* derivative for all points all have degree 3n-1.
* </p>
*
* @version $Id$
* @since 3.2
*/
public class FieldHermiteInterpolator<T extends FieldElement<T>> {
/** Sample abscissae. */
private final List<T> abscissae;
/** Top diagonal of the divided differences array. */
private final List<T[]> topDiagonal;
/** Bottom diagonal of the divided differences array. */
private final List<T[]> bottomDiagonal;
/** Create an empty interpolator.
*/
public FieldHermiteInterpolator() {
this.abscissae = new ArrayList<T>();
this.topDiagonal = new ArrayList<T[]>();
this.bottomDiagonal = new ArrayList<T[]>();
}
/** Add a sample point.
* <p>
* This method must be called once for each sample point. It is allowed to
* mix some calls with values only with calls with values and first
* derivatives.
* </p>
* <p>
* The point abscissae for all calls <em>must</em> be different.
* </p>
* @param x abscissa of the sample point
* @param value value and derivatives of the sample point
* (if only one row is passed, it is the value, if two rows are
* passed the first one is the value and the second the derivative
* and so on)
* @exception ZeroException if the abscissa difference between added point
* and a previous point is zero (i.e. the two points are at same abscissa)
* @exception MathArithmeticException if the number of derivatives is larger
* than 20, which prevents computation of a factorial
*/
public void addSamplePoint(final T x, final T[] ... value)
throws ZeroException, MathArithmeticException {
T factorial = x.getField().getOne();
for (int i = 0; i < value.length; ++i) {
final T[] y = value[i].clone();
if (i > 1) {
factorial = factorial.multiply(i);
final T inv = factorial.reciprocal();
for (int j = 0; j < y.length; ++j) {
y[j] = y[j].multiply(inv);
}
}
// update the bottom diagonal of the divided differences array
final int n = abscissae.size();
bottomDiagonal.add(n - i, y);
T[] bottom0 = y;
for (int j = i; j < n; ++j) {
final T[] bottom1 = bottomDiagonal.get(n - (j + 1));
if (x.equals(abscissae.get(n - (j + 1)))) {
throw new ZeroException(LocalizedFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO, x);
}
final T inv = x.subtract(abscissae.get(n - (j + 1))).reciprocal();
for (int k = 0; k < y.length; ++k) {
bottom1[k] = inv.multiply(bottom0[k].subtract(bottom1[k]));
}
bottom0 = bottom1;
}
// update the top diagonal of the divided differences array
topDiagonal.add(bottom0.clone());
// update the abscissae array
abscissae.add(x);
}
}
/** Interpolate value at a specified abscissa.
* @param x interpolation abscissa
* @return interpolated value
* @exception NoDataException if sample is empty
*/
public T[] value(T x) throws NoDataException {
// safety check
if (abscissae.isEmpty()) {
throw new NoDataException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE);
}
final T[] value = MathArrays.buildArray(x.getField(), topDiagonal.get(0).length);
T valueCoeff = x.getField().getOne();
for (int i = 0; i < topDiagonal.size(); ++i) {
T[] dividedDifference = topDiagonal.get(i);
for (int k = 0; k < value.length; ++k) {
value[k] = value[k].add(dividedDifference[k].multiply(valueCoeff));
}
final T deltaX = x.subtract(abscissae.get(i));
valueCoeff = valueCoeff.multiply(deltaX);
}
return value;
}
}

View File

@ -0,0 +1,245 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.Random;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.dfp.Dfp;
import org.apache.commons.math3.dfp.DfpField;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
public class FieldHermiteInterpolatorTest {
@Test
public void testZero() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(0) });
for (int x = -10; x < 10; x++) {
BigFraction y = interpolator.value(new BigFraction(x))[0];
Assert.assertEquals(BigFraction.ZERO, y);
}
}
@Test
public void testQuadratic() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(2) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(0) });
interpolator.addSamplePoint(new BigFraction(2), new BigFraction[] { new BigFraction(0) });
for (double x = -10; x < 10; x += 1.0) {
BigFraction y = interpolator.value(new BigFraction(x))[0];
Assert.assertEquals((x - 1) * (x - 2), y.doubleValue(), 1.0e-15);
}
}
@Test
public void testMixedDerivatives() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(1) }, new BigFraction[] { new BigFraction(2) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(4) });
interpolator.addSamplePoint(new BigFraction(2), new BigFraction[] { new BigFraction(5) }, new BigFraction[] { new BigFraction(2) });
Assert.assertEquals(new BigFraction(1), interpolator.value(new BigFraction(0))[0]);
Assert.assertEquals(new BigFraction(4), interpolator.value(new BigFraction(1))[0]);
Assert.assertEquals(new BigFraction(5), interpolator.value(new BigFraction(2))[0]);
}
@Test
public void testRandomPolynomialsValuesOnly() {
Random random = new Random(0x42b1e7dbd361a932l);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
maxDegree = FastMath.max(maxDegree, degree);
}
DfpField field = new DfpField(30);
Dfp step = field.getOne().divide(field.newDfp(10));
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (int j = 0; j < 1 + maxDegree; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = new Dfp[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = field.newDfp(p[k].value(x.getReal()));
}
interpolator.addSamplePoint(x, values);
}
for (int j = 0; j < 20; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = interpolator.value(x);
Assert.assertEquals(p.length, values.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x.getReal()),
values[k].getReal(),
1.0e-8 * FastMath.abs(p[k].value(x.getReal())));
}
}
}
}
@Test
public void testRandomPolynomialsFirstDerivative() {
Random random = new Random(0x570803c982ca5d3bl);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
PolynomialFunction[] pPrime = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
pPrime[k] = p[k].polynomialDerivative();
maxDegree = FastMath.max(maxDegree, degree);
}
DfpField field = new DfpField(30);
Dfp step = field.getOne().divide(field.newDfp(10));
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (int j = 0; j < 1 + maxDegree / 2; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = new Dfp[p.length];
Dfp[] derivatives = new Dfp[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = field.newDfp(p[k].value(x.getReal()));
derivatives[k] = field.newDfp(pPrime[k].value(x.getReal()));
}
interpolator.addSamplePoint(x, values, derivatives);
}
Dfp h = step.divide(field.newDfp(100000));
for (int j = 0; j < 20; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] y = interpolator.value(x);
Dfp[] yP = interpolator.value(x.add(h));
Dfp[] yM = interpolator.value(x.subtract(h));
Assert.assertEquals(p.length, y.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x.getReal()),
y[k].getReal(),
1.0e-8 * FastMath.abs(p[k].value(x.getReal())));
Assert.assertEquals(pPrime[k].value(x.getReal()),
yP[k].subtract(yM[k]).divide(h.multiply(2)).getReal(),
4.0e-8 * FastMath.abs(p[k].value(x.getReal())));
}
System.out.println();
}
}
}
@Test
public void testSine() {
DfpField field = new DfpField(30);
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (Dfp x = field.getZero(); x.getReal() < FastMath.PI; x = x.add(0.5)) {
interpolator.addSamplePoint(x, new Dfp[] { x.sin() });
}
for (Dfp x = field.newDfp(0.1); x.getReal() < 2.9; x = x.add(0.01)) {
Dfp y = interpolator.value(x)[0];
Assert.assertEquals( x.sin().getReal(), y.getReal(), 3.5e-5);
}
}
@Test
public void testSquareRoot() {
DfpField field = new DfpField(30);
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (Dfp x = field.getOne(); x.getReal() < 3.6; x = x.add(0.5)) {
interpolator.addSamplePoint(x, new Dfp[] { x.sqrt() });
}
for (Dfp x = field.newDfp(1.1); x.getReal() < 3.5; x = x.add(0.01)) {
Dfp y = interpolator.value(x)[0];
Assert.assertEquals(x.sqrt().getReal(), y.getReal(), 1.5e-4);
}
}
@Test
public void testWikipedia() {
// this test corresponds to the example from Wikipedia page:
// http://en.wikipedia.org/wiki/Hermite_interpolation
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(-1),
new BigFraction[] { new BigFraction( 2) },
new BigFraction[] { new BigFraction(-8) },
new BigFraction[] { new BigFraction(56) });
interpolator.addSamplePoint(new BigFraction( 0),
new BigFraction[] { new BigFraction( 1) },
new BigFraction[] { new BigFraction( 0) },
new BigFraction[] { new BigFraction( 0) });
interpolator.addSamplePoint(new BigFraction( 1),
new BigFraction[] { new BigFraction( 2) },
new BigFraction[] { new BigFraction( 8) },
new BigFraction[] { new BigFraction(56) });
for (BigFraction x = new BigFraction(-1); x.doubleValue() <= 1.0; x = x.add(new BigFraction(1, 8))) {
BigFraction y = interpolator.value(x)[0];
BigFraction x2 = x.multiply(x);
BigFraction x4 = x2.multiply(x2);
BigFraction x8 = x4.multiply(x4);
Assert.assertEquals(x8.add(new BigFraction(1)), y);
}
}
@Test
public void testOnePointParabola() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0),
new BigFraction[] { new BigFraction(1) },
new BigFraction[] { new BigFraction(1) },
new BigFraction[] { new BigFraction(2) });
for (BigFraction x = new BigFraction(-1); x.doubleValue() <= 1.0; x = x.add(new BigFraction(1, 8))) {
BigFraction y = interpolator.value(x)[0];
Assert.assertEquals(BigFraction.ONE.add(x.multiply(BigFraction.ONE.add(x))), y);
}
}
private PolynomialFunction randomPolynomial(int degree, Random random) {
double[] coeff = new double[ 1 + degree];
for (int j = 0; j < degree; ++j) {
coeff[j] = random.nextDouble();
}
return new PolynomialFunction(coeff);
}
@Test(expected=NoDataException.class)
public void testEmptySample() {
new FieldHermiteInterpolator<BigFraction>().value(BigFraction.ZERO);
}
@Test(expected=IllegalArgumentException.class)
public void testDuplicatedAbscissa() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(0) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(1) });
}
}