Added Hermite interpolator for ExtendFieldElement instances.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1449657 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2013-02-25 10:59:10 +00:00
parent 49d94ad78c
commit 684a87be70
3 changed files with 400 additions and 0 deletions

View File

@ -55,6 +55,9 @@ This is a minor release: It combines bug fixes and new features.
Changes to existing features were made in a backwards-compatible Changes to existing features were made in a backwards-compatible
way such as to allow drop-in replacement of the v3.1[.1] JAR file. way such as to allow drop-in replacement of the v3.1[.1] JAR file.
"> ">
<action dev="luc" type="add" >
Added Hermite interpolator for ExtendFieldElement instances.
</action>
<action dev="luc" type="add" > <action dev="luc" type="add" >
Added ExtendFieldElement interface to represent anything that is Added ExtendFieldElement interface to represent anything that is
real number like, implemented by both Decimal64, Dfp and DerivativeStructure. real number like, implemented by both Decimal64, Dfp and DerivativeStructure.

View File

@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;
/** Polynomial interpolator using both sample values and sample derivatives.
* <p>
* The interpolation polynomials match all sample points, including both values
* and provided derivatives. There is one polynomial for each component of
* the values vector. All polynomials have the same degree. The degree of the
* polynomials depends on the number of points and number of derivatives at each
* point. For example the interpolation polynomials for n sample points without
* any derivatives all have degree n-1. The interpolation polynomials for n
* sample points with the two extreme points having value and first derivative
* and the remaining points having value only all have degree n+1. The
* interpolation polynomial for n sample points with value, first and second
* derivative for all points all have degree 3n-1.
* </p>
*
* @version $Id$
* @since 3.2
*/
public class FieldHermiteInterpolator<T extends FieldElement<T>> {
/** Sample abscissae. */
private final List<T> abscissae;
/** Top diagonal of the divided differences array. */
private final List<T[]> topDiagonal;
/** Bottom diagonal of the divided differences array. */
private final List<T[]> bottomDiagonal;
/** Create an empty interpolator.
*/
public FieldHermiteInterpolator() {
this.abscissae = new ArrayList<T>();
this.topDiagonal = new ArrayList<T[]>();
this.bottomDiagonal = new ArrayList<T[]>();
}
/** Add a sample point.
* <p>
* This method must be called once for each sample point. It is allowed to
* mix some calls with values only with calls with values and first
* derivatives.
* </p>
* <p>
* The point abscissae for all calls <em>must</em> be different.
* </p>
* @param x abscissa of the sample point
* @param value value and derivatives of the sample point
* (if only one row is passed, it is the value, if two rows are
* passed the first one is the value and the second the derivative
* and so on)
* @exception ZeroException if the abscissa difference between added point
* and a previous point is zero (i.e. the two points are at same abscissa)
* @exception MathArithmeticException if the number of derivatives is larger
* than 20, which prevents computation of a factorial
*/
public void addSamplePoint(final T x, final T[] ... value)
throws ZeroException, MathArithmeticException {
T factorial = x.getField().getOne();
for (int i = 0; i < value.length; ++i) {
final T[] y = value[i].clone();
if (i > 1) {
factorial = factorial.multiply(i);
final T inv = factorial.reciprocal();
for (int j = 0; j < y.length; ++j) {
y[j] = y[j].multiply(inv);
}
}
// update the bottom diagonal of the divided differences array
final int n = abscissae.size();
bottomDiagonal.add(n - i, y);
T[] bottom0 = y;
for (int j = i; j < n; ++j) {
final T[] bottom1 = bottomDiagonal.get(n - (j + 1));
if (x.equals(abscissae.get(n - (j + 1)))) {
throw new ZeroException(LocalizedFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO, x);
}
final T inv = x.subtract(abscissae.get(n - (j + 1))).reciprocal();
for (int k = 0; k < y.length; ++k) {
bottom1[k] = inv.multiply(bottom0[k].subtract(bottom1[k]));
}
bottom0 = bottom1;
}
// update the top diagonal of the divided differences array
topDiagonal.add(bottom0.clone());
// update the abscissae array
abscissae.add(x);
}
}
/** Interpolate value at a specified abscissa.
* @param x interpolation abscissa
* @return interpolated value
* @exception NoDataException if sample is empty
*/
public T[] value(T x) throws NoDataException {
// safety check
if (abscissae.isEmpty()) {
throw new NoDataException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE);
}
final T[] value = MathArrays.buildArray(x.getField(), topDiagonal.get(0).length);
T valueCoeff = x.getField().getOne();
for (int i = 0; i < topDiagonal.size(); ++i) {
T[] dividedDifference = topDiagonal.get(i);
for (int k = 0; k < value.length; ++k) {
value[k] = value[k].add(dividedDifference[k].multiply(valueCoeff));
}
final T deltaX = x.subtract(abscissae.get(i));
valueCoeff = valueCoeff.multiply(deltaX);
}
return value;
}
}

View File

@ -0,0 +1,245 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.Random;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.dfp.Dfp;
import org.apache.commons.math3.dfp.DfpField;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
public class FieldHermiteInterpolatorTest {
@Test
public void testZero() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(0) });
for (int x = -10; x < 10; x++) {
BigFraction y = interpolator.value(new BigFraction(x))[0];
Assert.assertEquals(BigFraction.ZERO, y);
}
}
@Test
public void testQuadratic() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(2) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(0) });
interpolator.addSamplePoint(new BigFraction(2), new BigFraction[] { new BigFraction(0) });
for (double x = -10; x < 10; x += 1.0) {
BigFraction y = interpolator.value(new BigFraction(x))[0];
Assert.assertEquals((x - 1) * (x - 2), y.doubleValue(), 1.0e-15);
}
}
@Test
public void testMixedDerivatives() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0), new BigFraction[] { new BigFraction(1) }, new BigFraction[] { new BigFraction(2) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(4) });
interpolator.addSamplePoint(new BigFraction(2), new BigFraction[] { new BigFraction(5) }, new BigFraction[] { new BigFraction(2) });
Assert.assertEquals(new BigFraction(1), interpolator.value(new BigFraction(0))[0]);
Assert.assertEquals(new BigFraction(4), interpolator.value(new BigFraction(1))[0]);
Assert.assertEquals(new BigFraction(5), interpolator.value(new BigFraction(2))[0]);
}
@Test
public void testRandomPolynomialsValuesOnly() {
Random random = new Random(0x42b1e7dbd361a932l);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
maxDegree = FastMath.max(maxDegree, degree);
}
DfpField field = new DfpField(30);
Dfp step = field.getOne().divide(field.newDfp(10));
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (int j = 0; j < 1 + maxDegree; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = new Dfp[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = field.newDfp(p[k].value(x.getReal()));
}
interpolator.addSamplePoint(x, values);
}
for (int j = 0; j < 20; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = interpolator.value(x);
Assert.assertEquals(p.length, values.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x.getReal()),
values[k].getReal(),
1.0e-8 * FastMath.abs(p[k].value(x.getReal())));
}
}
}
}
@Test
public void testRandomPolynomialsFirstDerivative() {
Random random = new Random(0x570803c982ca5d3bl);
for (int i = 0; i < 100; ++i) {
int maxDegree = 0;
PolynomialFunction[] p = new PolynomialFunction[5];
PolynomialFunction[] pPrime = new PolynomialFunction[5];
for (int k = 0; k < p.length; ++k) {
int degree = random.nextInt(7);
p[k] = randomPolynomial(degree, random);
pPrime[k] = p[k].polynomialDerivative();
maxDegree = FastMath.max(maxDegree, degree);
}
DfpField field = new DfpField(30);
Dfp step = field.getOne().divide(field.newDfp(10));
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (int j = 0; j < 1 + maxDegree / 2; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] values = new Dfp[p.length];
Dfp[] derivatives = new Dfp[p.length];
for (int k = 0; k < p.length; ++k) {
values[k] = field.newDfp(p[k].value(x.getReal()));
derivatives[k] = field.newDfp(pPrime[k].value(x.getReal()));
}
interpolator.addSamplePoint(x, values, derivatives);
}
Dfp h = step.divide(field.newDfp(100000));
for (int j = 0; j < 20; ++j) {
Dfp x = field.newDfp(j).multiply(step);
Dfp[] y = interpolator.value(x);
Dfp[] yP = interpolator.value(x.add(h));
Dfp[] yM = interpolator.value(x.subtract(h));
Assert.assertEquals(p.length, y.length);
for (int k = 0; k < p.length; ++k) {
Assert.assertEquals(p[k].value(x.getReal()),
y[k].getReal(),
1.0e-8 * FastMath.abs(p[k].value(x.getReal())));
Assert.assertEquals(pPrime[k].value(x.getReal()),
yP[k].subtract(yM[k]).divide(h.multiply(2)).getReal(),
4.0e-8 * FastMath.abs(p[k].value(x.getReal())));
}
System.out.println();
}
}
}
@Test
public void testSine() {
DfpField field = new DfpField(30);
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (Dfp x = field.getZero(); x.getReal() < FastMath.PI; x = x.add(0.5)) {
interpolator.addSamplePoint(x, new Dfp[] { x.sin() });
}
for (Dfp x = field.newDfp(0.1); x.getReal() < 2.9; x = x.add(0.01)) {
Dfp y = interpolator.value(x)[0];
Assert.assertEquals( x.sin().getReal(), y.getReal(), 3.5e-5);
}
}
@Test
public void testSquareRoot() {
DfpField field = new DfpField(30);
FieldHermiteInterpolator<Dfp> interpolator = new FieldHermiteInterpolator<Dfp>();
for (Dfp x = field.getOne(); x.getReal() < 3.6; x = x.add(0.5)) {
interpolator.addSamplePoint(x, new Dfp[] { x.sqrt() });
}
for (Dfp x = field.newDfp(1.1); x.getReal() < 3.5; x = x.add(0.01)) {
Dfp y = interpolator.value(x)[0];
Assert.assertEquals(x.sqrt().getReal(), y.getReal(), 1.5e-4);
}
}
@Test
public void testWikipedia() {
// this test corresponds to the example from Wikipedia page:
// http://en.wikipedia.org/wiki/Hermite_interpolation
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(-1),
new BigFraction[] { new BigFraction( 2) },
new BigFraction[] { new BigFraction(-8) },
new BigFraction[] { new BigFraction(56) });
interpolator.addSamplePoint(new BigFraction( 0),
new BigFraction[] { new BigFraction( 1) },
new BigFraction[] { new BigFraction( 0) },
new BigFraction[] { new BigFraction( 0) });
interpolator.addSamplePoint(new BigFraction( 1),
new BigFraction[] { new BigFraction( 2) },
new BigFraction[] { new BigFraction( 8) },
new BigFraction[] { new BigFraction(56) });
for (BigFraction x = new BigFraction(-1); x.doubleValue() <= 1.0; x = x.add(new BigFraction(1, 8))) {
BigFraction y = interpolator.value(x)[0];
BigFraction x2 = x.multiply(x);
BigFraction x4 = x2.multiply(x2);
BigFraction x8 = x4.multiply(x4);
Assert.assertEquals(x8.add(new BigFraction(1)), y);
}
}
@Test
public void testOnePointParabola() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(0),
new BigFraction[] { new BigFraction(1) },
new BigFraction[] { new BigFraction(1) },
new BigFraction[] { new BigFraction(2) });
for (BigFraction x = new BigFraction(-1); x.doubleValue() <= 1.0; x = x.add(new BigFraction(1, 8))) {
BigFraction y = interpolator.value(x)[0];
Assert.assertEquals(BigFraction.ONE.add(x.multiply(BigFraction.ONE.add(x))), y);
}
}
private PolynomialFunction randomPolynomial(int degree, Random random) {
double[] coeff = new double[ 1 + degree];
for (int j = 0; j < degree; ++j) {
coeff[j] = random.nextDouble();
}
return new PolynomialFunction(coeff);
}
@Test(expected=NoDataException.class)
public void testEmptySample() {
new FieldHermiteInterpolator<BigFraction>().value(BigFraction.ZERO);
}
@Test(expected=IllegalArgumentException.class)
public void testDuplicatedAbscissa() {
FieldHermiteInterpolator<BigFraction> interpolator = new FieldHermiteInterpolator<BigFraction>();
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(0) });
interpolator.addSamplePoint(new BigFraction(1), new BigFraction[] { new BigFraction(1) });
}
}