diff --git a/src/changes/changes.xml b/src/changes/changes.xml index a3e1ceb66..e81b7eb44 100644 --- a/src/changes/changes.xml +++ b/src/changes/changes.xml @@ -54,6 +54,9 @@ If the output is not quite correct, check for invisible trailing spaces! + + Add "Calinski-Harabsz" clustering evaluator. + Abstract class "ClusterEvaluator" replaced by an interface. diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java index 31145beca..0a0918cfe 100644 --- a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java +++ b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java @@ -19,7 +19,7 @@ package org.apache.commons.math4.ml.clustering.evaluation; import org.apache.commons.math4.exception.InsufficientDataException; import org.apache.commons.math4.ml.clustering.Cluster; -import org.apache.commons.math4.ml.clustering.ClusterRanking; +import org.apache.commons.math4.ml.clustering.ClusterEvaluator; import org.apache.commons.math4.ml.clustering.Clusterable; import org.apache.commons.math4.util.MathArrays; @@ -38,12 +38,10 @@ import java.util.List; * @see A dendrite method for cluster * analysis */ -public class CalinskiHarabasz implements ClusterRanking { - /** - * {@inheritDoc} - */ +public class CalinskiHarabasz implements ClusterEvaluator { + /** {@inheritDoc} */ @Override - public double compute(List> clusters) { + public double score(List> clusters) { final int dimension = dimensionOfClusters(clusters); final double[] centroid = meanOfClusters(clusters, dimension); @@ -68,6 +66,13 @@ public class CalinskiHarabasz implements ClusterRanking b; + } + /** * Calculate covariance of two double array. *
diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java
index 2d02358cb..0631115d0 100644
--- a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java
+++ b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java
@@ -16,5 +16,9 @@
  */
 /**
  * Cluster evaluation methods.
+ *
+ * All evaluators should implement the
+ * {@link org.apache.commons.math4.ml.clustering.ClusterEvaluator}
+ * interface.
  */
 package org.apache.commons.math4.ml.clustering.evaluation;
diff --git a/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java b/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java
index 3ed17549f..2ee5b0609 100644
--- a/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java
+++ b/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java
@@ -18,7 +18,7 @@
 package org.apache.commons.math4.ml.clustering.evaluation;
 
 import org.apache.commons.math4.ml.clustering.CentroidCluster;
-import org.apache.commons.math4.ml.clustering.ClusterRanking;
+import org.apache.commons.math4.ml.clustering.ClusterEvaluator;
 import org.apache.commons.math4.ml.clustering.DoublePoint;
 import org.apache.commons.math4.ml.clustering.KMeansPlusPlusClusterer;
 import org.apache.commons.math4.ml.distance.DistanceMeasure;
@@ -33,7 +33,7 @@ import java.util.ArrayList;
 import java.util.List;
 
 public class CalinskiHarabaszTest {
-    private ClusterRanking evaluator;
+    private ClusterEvaluator evaluator;
     private DistanceMeasure distanceMeasure;
 
     @Before
@@ -65,7 +65,7 @@ public class CalinskiHarabaszTest {
             final int k = i + 2;
             KMeansPlusPlusClusterer kMeans = new KMeansPlusPlusClusterer<>(k, -1, distanceMeasure, rnd);
             List> clusters = kMeans.cluster(points);
-            double score = evaluator.compute(clusters);
+            double score = evaluator.score(clusters);
             if (score > expectBestScore) {
                 expectBestScore = score;
             }
@@ -91,7 +91,7 @@ public class CalinskiHarabaszTest {
             final int k = i + 2;
             KMeansPlusPlusClusterer kMeans = new KMeansPlusPlusClusterer<>(k, -1, distanceMeasure, rnd);
             List> clusters = kMeans.cluster(points);
-            double score = evaluator.compute(clusters);
+            double score = evaluator.score(clusters);
             if (score > expectBestScore) {
                 expectBestScore = score;
             }