Performance improvement in method "gcd(int, int)" (~2 to 4 times faster than
the previous implementation). Thanks to Sebastien Riou.


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1381206 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2012-09-05 14:46:59 +00:00
parent 350f726ce5
commit 68fe06032a
1 changed files with 123 additions and 67 deletions

View File

@ -358,25 +358,25 @@ public final class ArithmeticUtils {
}
/**
* <p>
* Gets the greatest common divisor of the absolute value of two numbers,
* using the "binary gcd" method which avoids division and modulo
* operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
* Stein (1961).
* </p>
* Computes the greatest common divisor of the absolute value of two
* numbers, using the "binary gcd" method which avoids division and
* modulo operations.
* See Knuth 4.5.2 algorithm B.
* The algorithm is due to Josef Stein (1961).
* <br/>
* Special cases:
* <ul>
* <li>The invocations
* {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)},
* {@code gcd(Integer.MIN_VALUE, 0)} and
* {@code gcd(0, Integer.MIN_VALUE)} throw an
* {@code ArithmeticException}, because the result would be 2^31, which
* is too large for an int value.</li>
* <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
* {@code gcd(x, 0)} is the absolute value of {@code x}, except
* for the special cases above.
* <li>The invocation {@code gcd(0, 0)} is the only one which returns
* {@code 0}.</li>
* <li>The invocations
* {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)},
* {@code gcd(Integer.MIN_VALUE, 0)} and
* {@code gcd(0, Integer.MIN_VALUE)} throw an
* {@code ArithmeticException}, because the result would be 2^31, which
* is too large for an int value.</li>
* <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
* {@code gcd(x, 0)} is the absolute value of {@code x}, except
* for the special cases above.</li>
* <li>The invocation {@code gcd(0, 0)} is the only one which returns
* {@code 0}.</li>
* </ul>
*
* @param p Number.
@ -386,62 +386,118 @@ public final class ArithmeticUtils {
* a non-negative {@code int} value.
* @since 1.1
*/
public static int gcd(final int p, final int q) {
int u = p;
int v = q;
if ((u == 0) || (v == 0)) {
if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) {
public static int gcd(int p,
int q)
throws MathArithmeticException {
int a = p;
int b = q;
if (a == 0 ||
b == 0) {
if (a == Integer.MIN_VALUE ||
b == Integer.MIN_VALUE) {
throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
return FastMath.abs(u) + FastMath.abs(v);
return FastMath.abs(a + b);
}
// keep u and v negative, as negative integers range down to
// -2^31, while positive numbers can only be as large as 2^31-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
/* assert u!=0 && v!=0; */
if (u > 0) {
u = -u;
} // make u negative
if (v > 0) {
v = -v;
} // make v negative
// B1. [Find power of 2]
int k = 0;
while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are
// both even...
u /= 2;
v /= 2;
k++; // cast out twos.
}
if (k == 31) {
throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t & 1) == 0) { // while t is even..
t /= 2; // cast out twos
}
// B5 [reset max(u,v)]
if (t > 0) {
u = -t;
long al = a;
long bl = b;
boolean useLong = false;
if (a < 0) {
if(Integer.MIN_VALUE == a) {
useLong = true;
} else {
v = t;
a = -a;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u) / 2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t != 0);
return -u * (1 << k); // gcd is u*2^k
al = -al;
}
if (b < 0) {
if (Integer.MIN_VALUE == b) {
useLong = true;
} else {
b = -b;
}
bl = -bl;
}
if (useLong) {
if(al == bl) {
throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
long blbu = bl;
bl = al;
al = blbu % al;
if (al == 0) {
if (bl > Integer.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
return (int) bl;
}
blbu = bl;
// Now "al" and "bl" fit in an "int".
b = (int) al;
a = (int) (blbu % al);
}
return gcdPositive(a, b);
}
/**
* Computes the greatest common divisor of two <em>positive</em> numbers
* (this precondition is <em>not</em> checked and the result is undefined
* if not fulfilled) using the "binary gcd" method which avoids division
* and modulo operations.
* See Knuth 4.5.2 algorithm B.
* The algorithm is due to Josef Stein (1961).
* <br/>
* Special cases:
* <ul>
* <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
* {@code gcd(x, 0)} is the value of {@code x}.</li>
* <li>The invocation {@code gcd(0, 0)} is the only one which returns
* {@code 0}.</li>
* </ul>
*
* @param a Positive number.
* @param b Positive number.
* @return the greatest common divisor.
*/
private static int gcdPositive(int a,
int b) {
if (a == 0) {
return b;
}
else if (b == 0) {
return a;
}
// Make "a" and "b" odd, keeping track of common power of 2.
final int aTwos = Integer.numberOfTrailingZeros(a);
a >>= aTwos;
final int bTwos = Integer.numberOfTrailingZeros(b);
b >>= bTwos;
final int shift = Math.min(aTwos, bTwos);
// "a" and "b" are positive.
// If a > b then "gdc(a, b)" is equal to "gcd(a - b, b)".
// If a < b then "gcd(a, b)" is equal to "gcd(b - a, a)".
// Hence, in the successive iterations:
// "a" becomes the absolute difference of the current values,
// "b" becomes the minimum of the current values.
while (a != b) {
final int delta = a - b;
b = Math.min(a, b);
a = Math.abs(delta);
// Remove any power of 2 in "a" ("b" is guaranteed to be odd).
a >>= Integer.numberOfTrailingZeros(a);
}
// Recover the common power of 2.
return a << shift;
}
/**