diff --git a/src/main/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtils.java b/src/main/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtils.java index 65ad670d3..b26ad45dd 100644 --- a/src/main/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtils.java +++ b/src/main/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtils.java @@ -22,8 +22,8 @@ import java.util.List; import java.util.Map; import org.apache.commons.math.fraction.BigFraction; +import org.apache.commons.math.util.ArithmeticsUtils; import org.apache.commons.math.util.FastMath; -import org.apache.commons.math.util.MathUtils; /** * A collection of static methods that operate on or return polynomials. @@ -326,7 +326,7 @@ public class PolynomialsUtils { final int[][] coeff = new int[dp1][dp1]; for (int i = 0; i < dp1; i++){ for(int j = 0; j <= i; j++){ - coeff[i][j] = (int) MathUtils.binomialCoefficient(i, j); + coeff[i][j] = (int) ArithmeticsUtils.binomialCoefficient(i, j); } } diff --git a/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java index 5c726fa36..d32db04f5 100644 --- a/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java +++ b/src/main/java/org/apache/commons/math/distribution/HypergeometricDistributionImpl.java @@ -23,7 +23,7 @@ import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.NumberIsTooLargeException; import org.apache.commons.math.exception.util.LocalizedFormats; -import org.apache.commons.math.util.MathUtils; +import org.apache.commons.math.util.ArithmeticsUtils; import org.apache.commons.math.util.FastMath; /** @@ -231,9 +231,9 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution * @return PMF for the distribution. */ private double probability(int n, int m, int k, int x) { - return FastMath.exp(MathUtils.binomialCoefficientLog(m, x) + - MathUtils.binomialCoefficientLog(n - m, k - x) - - MathUtils.binomialCoefficientLog(n, k)); + return FastMath.exp(ArithmeticsUtils.binomialCoefficientLog(m, x) + + ArithmeticsUtils.binomialCoefficientLog(n - m, k - x) - + ArithmeticsUtils.binomialCoefficientLog(n, k)); } /** diff --git a/src/main/java/org/apache/commons/math/distribution/PascalDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/PascalDistributionImpl.java index d9f614411..a81e0524c 100644 --- a/src/main/java/org/apache/commons/math/distribution/PascalDistributionImpl.java +++ b/src/main/java/org/apache/commons/math/distribution/PascalDistributionImpl.java @@ -22,7 +22,7 @@ import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.special.Beta; -import org.apache.commons.math.util.MathUtils; +import org.apache.commons.math.util.ArithmeticsUtils; import org.apache.commons.math.util.FastMath; /** @@ -128,7 +128,7 @@ public class PascalDistributionImpl extends AbstractIntegerDistribution if (x < 0) { ret = 0.0; } else { - ret = MathUtils.binomialCoefficientDouble(x + + ret = ArithmeticsUtils.binomialCoefficientDouble(x + numberOfSuccesses - 1, numberOfSuccesses - 1) * FastMath.pow(probabilityOfSuccess, numberOfSuccesses) * FastMath.pow(1.0 - probabilityOfSuccess, x); diff --git a/src/main/java/org/apache/commons/math/fraction/Fraction.java b/src/main/java/org/apache/commons/math/fraction/Fraction.java index 393cc4792..9711a5ca3 100644 --- a/src/main/java/org/apache/commons/math/fraction/Fraction.java +++ b/src/main/java/org/apache/commons/math/fraction/Fraction.java @@ -24,7 +24,6 @@ import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.exception.MathArithmeticException; import org.apache.commons.math.exception.NullArgumentException; import org.apache.commons.math.util.ArithmeticsUtils; -import org.apache.commons.math.util.MathUtils; import org.apache.commons.math.util.FastMath; /** @@ -490,12 +489,12 @@ public class Fraction int d1 = ArithmeticsUtils.gcd(denominator, fraction.denominator); if (d1==1) { // result is ( (u*v' +/- u'v) / u'v') - int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator); - int upv = MathUtils.mulAndCheck(fraction.numerator, denominator); + int uvp = ArithmeticsUtils.mulAndCheck(numerator, fraction.denominator); + int upv = ArithmeticsUtils.mulAndCheck(fraction.numerator, denominator); return new Fraction (isAdd ? ArithmeticsUtils.addAndCheck(uvp, upv) : ArithmeticsUtils.subAndCheck(uvp, upv), - MathUtils.mulAndCheck(denominator, fraction.denominator)); + ArithmeticsUtils.mulAndCheck(denominator, fraction.denominator)); } // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 // exercise 7. we're going to use a BigInteger. @@ -517,7 +516,7 @@ public class Fraction w); } return new Fraction (w.intValue(), - MathUtils.mulAndCheck(denominator/d1, + ArithmeticsUtils.mulAndCheck(denominator/d1, fraction.denominator/d2)); } @@ -543,8 +542,8 @@ public class Fraction int d1 = ArithmeticsUtils.gcd(numerator, fraction.denominator); int d2 = ArithmeticsUtils.gcd(fraction.numerator, denominator); return getReducedFraction - (MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2), - MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1)); + (ArithmeticsUtils.mulAndCheck(numerator/d1, fraction.numerator/d2), + ArithmeticsUtils.mulAndCheck(denominator/d2, fraction.denominator/d1)); } /** diff --git a/src/main/java/org/apache/commons/math/util/ArithmeticsUtils.java b/src/main/java/org/apache/commons/math/util/ArithmeticsUtils.java index d757d9cf7..e2248a03c 100644 --- a/src/main/java/org/apache/commons/math/util/ArithmeticsUtils.java +++ b/src/main/java/org/apache/commons/math/util/ArithmeticsUtils.java @@ -18,6 +18,7 @@ package org.apache.commons.math.util; import org.apache.commons.math.exception.MathArithmeticException; import org.apache.commons.math.exception.NotPositiveException; +import org.apache.commons.math.exception.NumberIsTooLargeException; import org.apache.commons.math.exception.util.Localizable; import org.apache.commons.math.exception.util.LocalizedFormats; @@ -77,92 +78,193 @@ public final class ArithmeticsUtils { } /** - * Add two long integers, checking for overflow. + * Returns an exact representation of the Binomial + * Coefficient, "{@code n choose k}", the number of + * {@code k}-element subsets that can be selected from an + * {@code n}-element set. + *

+ * Preconditions: + *

* - * @param a Addend. - * @param b Addend. - * @param pattern Pattern to use for any thrown exception. - * @return the sum {@code a + b}. - * @throws MathArithmeticException if the result cannot be represented - * as a {@code long}. - * @since 1.2 + * @param n the size of the set + * @param k the size of the subsets to be counted + * @return {@code n choose k} + * @throws MathIllegalArgumentException if preconditions are not met. + * @throws MathArithmeticException if the result is too large to be + * represented by a long integer. */ - private static long addAndCheck(long a, long b, Localizable pattern) { - long ret; - if (a > b) { - // use symmetry to reduce boundary cases - ret = addAndCheck(b, a, pattern); + public static long binomialCoefficient(final int n, final int k) { + ArithmeticsUtils.checkBinomial(n, k); + if ((n == k) || (k == 0)) { + return 1; + } + if ((k == 1) || (k == n - 1)) { + return n; + } + // Use symmetry for large k + if (k > n / 2) { + return binomialCoefficient(n, n - k); + } + + // We use the formula + // (n choose k) = n! / (n-k)! / k! + // (n choose k) == ((n-k+1)*...*n) / (1*...*k) + // which could be written + // (n choose k) == (n-1 choose k-1) * n / k + long result = 1; + if (n <= 61) { + // For n <= 61, the naive implementation cannot overflow. + int i = n - k + 1; + for (int j = 1; j <= k; j++) { + result = result * i / j; + i++; + } + } else if (n <= 66) { + // For n > 61 but n <= 66, the result cannot overflow, + // but we must take care not to overflow intermediate values. + int i = n - k + 1; + for (int j = 1; j <= k; j++) { + // We know that (result * i) is divisible by j, + // but (result * i) may overflow, so we split j: + // Filter out the gcd, d, so j/d and i/d are integer. + // result is divisible by (j/d) because (j/d) + // is relative prime to (i/d) and is a divisor of + // result * (i/d). + final long d = gcd(i, j); + result = (result / (j / d)) * (i / d); + i++; + } } else { - // assert a <= b - - if (a < 0) { - if (b < 0) { - // check for negative overflow - if (Long.MIN_VALUE - b <= a) { - ret = a + b; - } else { - throw new MathArithmeticException(pattern, a, b); - } - } else { - // opposite sign addition is always safe - ret = a + b; - } - } else { - // assert a >= 0 - // assert b >= 0 - - // check for positive overflow - if (a <= Long.MAX_VALUE - b) { - ret = a + b; - } else { - throw new MathArithmeticException(pattern, a, b); - } + // For n > 66, a result overflow might occur, so we check + // the multiplication, taking care to not overflow + // unnecessary. + int i = n - k + 1; + for (int j = 1; j <= k; j++) { + final long d = gcd(i, j); + result = mulAndCheck(result / (j / d), i / d); + i++; } } - return ret; + return result; } /** - * Subtract two integers, checking for overflow. + * Returns a {@code double} representation of the Binomial + * Coefficient, "{@code n choose k}", the number of + * {@code k}-element subsets that can be selected from an + * {@code n}-element set. + *

+ * Preconditions: + *

* - * @param x Minuend. - * @param y Subtrahend. - * @return the difference {@code x - y}. - * @throws MathArithmeticException if the result can not be represented - * as an {@code int}. - * @since 1.1 + * @param n the size of the set + * @param k the size of the subsets to be counted + * @return {@code n choose k} + * @throws IllegalArgumentException if preconditions are not met. */ - public static int subAndCheck(int x, int y) { - long s = (long)x - (long)y; - if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { - throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y); + public static double binomialCoefficientDouble(final int n, final int k) { + ArithmeticsUtils.checkBinomial(n, k); + if ((n == k) || (k == 0)) { + return 1d; } - return (int)s; + if ((k == 1) || (k == n - 1)) { + return n; + } + if (k > n/2) { + return binomialCoefficientDouble(n, n - k); + } + if (n < 67) { + return binomialCoefficient(n,k); + } + + double result = 1d; + for (int i = 1; i <= k; i++) { + result *= (double)(n - k + i) / (double)i; + } + + return FastMath.floor(result + 0.5); } /** - * Subtract two long integers, checking for overflow. + * Returns the natural {@code log} of the Binomial + * Coefficient, "{@code n choose k}", the number of + * {@code k}-element subsets that can be selected from an + * {@code n}-element set. + *

+ * Preconditions: + *

* - * @param a Value. - * @param b Value. - * @return the difference {@code a - b}. - * @throws MathArithmeticException if the result can not be represented as a - * {@code long}. - * @since 1.2 + * @param n the size of the set + * @param k the size of the subsets to be counted + * @return {@code n choose k} + * @throws IllegalArgumentException if preconditions are not met. */ - public static long subAndCheck(long a, long b) { - long ret; - if (b == Long.MIN_VALUE) { - if (a < 0) { - ret = a - b; - } else { - throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b); - } - } else { - // use additive inverse - ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION); + public static double binomialCoefficientLog(final int n, final int k) { + ArithmeticsUtils.checkBinomial(n, k); + if ((n == k) || (k == 0)) { + return 0; } - return ret; + if ((k == 1) || (k == n - 1)) { + return FastMath.log(n); + } + + /* + * For values small enough to do exact integer computation, + * return the log of the exact value + */ + if (n < 67) { + return FastMath.log(binomialCoefficient(n,k)); + } + + /* + * Return the log of binomialCoefficientDouble for values that will not + * overflow binomialCoefficientDouble + */ + if (n < 1030) { + return FastMath.log(binomialCoefficientDouble(n, k)); + } + + if (k > n / 2) { + return binomialCoefficientLog(n, n - k); + } + + /* + * Sum logs for values that could overflow + */ + double logSum = 0; + + // n!/(n-k)! + for (int i = n - k + 1; i <= n; i++) { + logSum += FastMath.log(i); + } + + // divide by k! + for (int i = 2; i <= k; i++) { + logSum -= FastMath.log(i); + } + + return logSum; } /** @@ -419,4 +521,251 @@ public final class ArithmeticsUtils { } while (t != 0); return -u * (1L << k); // gcd is u*2^k } + + /** + *

+ * Returns the least common multiple of the absolute value of two numbers, + * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. + *

+ * Special cases: + * + * + * @param a Number. + * @param b Number. + * @return the least common multiple, never negative. + * @throws MathArithmeticException if the result cannot be represented as + * a non-negative {@code int} value. + * @since 1.1 + */ + public static int lcm(int a, int b) { + if (a == 0 || b == 0){ + return 0; + } + int lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b)); + if (lcm == Integer.MIN_VALUE) { + throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS, + a, b); + } + return lcm; + } + + /** + *

+ * Returns the least common multiple of the absolute value of two numbers, + * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. + *

+ * Special cases: + * + * + * @param a Number. + * @param b Number. + * @return the least common multiple, never negative. + * @throws MathArithmeticException if the result cannot be represented + * as a non-negative {@code long} value. + * @since 2.1 + */ + public static long lcm(long a, long b) { + if (a == 0 || b == 0){ + return 0; + } + long lcm = FastMath.abs(ArithmeticsUtils.mulAndCheck(a / gcd(a, b), b)); + if (lcm == Long.MIN_VALUE){ + throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS, + a, b); + } + return lcm; + } + + /** + * Multiply two integers, checking for overflow. + * + * @param x Factor. + * @param y Factor. + * @return the product {@code x * y}. + * @throws MathArithmeticException if the result can not be + * represented as an {@code int}. + * @since 1.1 + */ + public static int mulAndCheck(int x, int y) { + long m = ((long)x) * ((long)y); + if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { + throw new MathArithmeticException(); + } + return (int)m; + } + + /** + * Multiply two long integers, checking for overflow. + * + * @param a Factor. + * @param b Factor. + * @return the product {@code a * b}. + * @throws MathArithmeticException if the result can not be represented + * as a {@code long}. + * @since 1.2 + */ + public static long mulAndCheck(long a, long b) { + long ret; + if (a > b) { + // use symmetry to reduce boundary cases + ret = mulAndCheck(b, a); + } else { + if (a < 0) { + if (b < 0) { + // check for positive overflow with negative a, negative b + if (a >= Long.MAX_VALUE / b) { + ret = a * b; + } else { + throw new MathArithmeticException(); + } + } else if (b > 0) { + // check for negative overflow with negative a, positive b + if (Long.MIN_VALUE / b <= a) { + ret = a * b; + } else { + throw new MathArithmeticException(); + + } + } else { + // assert b == 0 + ret = 0; + } + } else if (a > 0) { + // assert a > 0 + // assert b > 0 + + // check for positive overflow with positive a, positive b + if (a <= Long.MAX_VALUE / b) { + ret = a * b; + } else { + throw new MathArithmeticException(); + } + } else { + // assert a == 0 + ret = 0; + } + } + return ret; + } + + /** + * Subtract two integers, checking for overflow. + * + * @param x Minuend. + * @param y Subtrahend. + * @return the difference {@code x - y}. + * @throws MathArithmeticException if the result can not be represented + * as an {@code int}. + * @since 1.1 + */ + public static int subAndCheck(int x, int y) { + long s = (long)x - (long)y; + if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { + throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y); + } + return (int)s; + } + + /** + * Subtract two long integers, checking for overflow. + * + * @param a Value. + * @param b Value. + * @return the difference {@code a - b}. + * @throws MathArithmeticException if the result can not be represented as a + * {@code long}. + * @since 1.2 + */ + public static long subAndCheck(long a, long b) { + long ret; + if (b == Long.MIN_VALUE) { + if (a < 0) { + ret = a - b; + } else { + throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b); + } + } else { + // use additive inverse + ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION); + } + return ret; + } + + /** + * Add two long integers, checking for overflow. + * + * @param a Addend. + * @param b Addend. + * @param pattern Pattern to use for any thrown exception. + * @return the sum {@code a + b}. + * @throws MathArithmeticException if the result cannot be represented + * as a {@code long}. + * @since 1.2 + */ + private static long addAndCheck(long a, long b, Localizable pattern) { + long ret; + if (a > b) { + // use symmetry to reduce boundary cases + ret = addAndCheck(b, a, pattern); + } else { + // assert a <= b + + if (a < 0) { + if (b < 0) { + // check for negative overflow + if (Long.MIN_VALUE - b <= a) { + ret = a + b; + } else { + throw new MathArithmeticException(pattern, a, b); + } + } else { + // opposite sign addition is always safe + ret = a + b; + } + } else { + // assert a >= 0 + // assert b >= 0 + + // check for positive overflow + if (a <= Long.MAX_VALUE - b) { + ret = a + b; + } else { + throw new MathArithmeticException(pattern, a, b); + } + } + } + return ret; + } + + /** + * Check binomial preconditions. + * + * @param n Size of the set. + * @param k Size of the subsets to be counted. + * @throws NotPositiveException if {@code n < 0}. + * @throws NumberIsTooLargeException if {@code k > n}. + */ + private static void checkBinomial(final int n, final int k) { + if (n < k) { + throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER, + k, n, true); + } + if (n < 0) { + throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n); + } + } } diff --git a/src/main/java/org/apache/commons/math/util/MathUtils.java b/src/main/java/org/apache/commons/math/util/MathUtils.java index e33b0bf30..0145c25fd 100644 --- a/src/main/java/org/apache/commons/math/util/MathUtils.java +++ b/src/main/java/org/apache/commons/math/util/MathUtils.java @@ -26,7 +26,6 @@ import org.apache.commons.math.exception.MathIllegalArgumentException; import org.apache.commons.math.exception.NotFiniteNumberException; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.NullArgumentException; -import org.apache.commons.math.exception.NumberIsTooLargeException; import org.apache.commons.math.exception.util.Localizable; import org.apache.commons.math.exception.util.LocalizedFormats; @@ -76,214 +75,6 @@ public final class MathUtils { super(); } - /** - * Returns an exact representation of the Binomial - * Coefficient, "{@code n choose k}", the number of - * {@code k}-element subsets that can be selected from an - * {@code n}-element set. - *

- * Preconditions: - *

- * - * @param n the size of the set - * @param k the size of the subsets to be counted - * @return {@code n choose k} - * @throws MathIllegalArgumentException if preconditions are not met. - * @throws MathArithmeticException if the result is too large to be - * represented by a long integer. - */ - public static long binomialCoefficient(final int n, final int k) { - checkBinomial(n, k); - if ((n == k) || (k == 0)) { - return 1; - } - if ((k == 1) || (k == n - 1)) { - return n; - } - // Use symmetry for large k - if (k > n / 2) { - return binomialCoefficient(n, n - k); - } - - // We use the formula - // (n choose k) = n! / (n-k)! / k! - // (n choose k) == ((n-k+1)*...*n) / (1*...*k) - // which could be written - // (n choose k) == (n-1 choose k-1) * n / k - long result = 1; - if (n <= 61) { - // For n <= 61, the naive implementation cannot overflow. - int i = n - k + 1; - for (int j = 1; j <= k; j++) { - result = result * i / j; - i++; - } - } else if (n <= 66) { - // For n > 61 but n <= 66, the result cannot overflow, - // but we must take care not to overflow intermediate values. - int i = n - k + 1; - for (int j = 1; j <= k; j++) { - // We know that (result * i) is divisible by j, - // but (result * i) may overflow, so we split j: - // Filter out the gcd, d, so j/d and i/d are integer. - // result is divisible by (j/d) because (j/d) - // is relative prime to (i/d) and is a divisor of - // result * (i/d). - final long d = ArithmeticsUtils.gcd(i, j); - result = (result / (j / d)) * (i / d); - i++; - } - } else { - // For n > 66, a result overflow might occur, so we check - // the multiplication, taking care to not overflow - // unnecessary. - int i = n - k + 1; - for (int j = 1; j <= k; j++) { - final long d = ArithmeticsUtils.gcd(i, j); - result = mulAndCheck(result / (j / d), i / d); - i++; - } - } - return result; - } - - /** - * Returns a {@code double} representation of the Binomial - * Coefficient, "{@code n choose k}", the number of - * {@code k}-element subsets that can be selected from an - * {@code n}-element set. - *

- * Preconditions: - *

- * - * @param n the size of the set - * @param k the size of the subsets to be counted - * @return {@code n choose k} - * @throws IllegalArgumentException if preconditions are not met. - */ - public static double binomialCoefficientDouble(final int n, final int k) { - checkBinomial(n, k); - if ((n == k) || (k == 0)) { - return 1d; - } - if ((k == 1) || (k == n - 1)) { - return n; - } - if (k > n/2) { - return binomialCoefficientDouble(n, n - k); - } - if (n < 67) { - return binomialCoefficient(n,k); - } - - double result = 1d; - for (int i = 1; i <= k; i++) { - result *= (double)(n - k + i) / (double)i; - } - - return FastMath.floor(result + 0.5); - } - - /** - * Returns the natural {@code log} of the Binomial - * Coefficient, "{@code n choose k}", the number of - * {@code k}-element subsets that can be selected from an - * {@code n}-element set. - *

- * Preconditions: - *

- * - * @param n the size of the set - * @param k the size of the subsets to be counted - * @return {@code n choose k} - * @throws IllegalArgumentException if preconditions are not met. - */ - public static double binomialCoefficientLog(final int n, final int k) { - checkBinomial(n, k); - if ((n == k) || (k == 0)) { - return 0; - } - if ((k == 1) || (k == n - 1)) { - return FastMath.log(n); - } - - /* - * For values small enough to do exact integer computation, - * return the log of the exact value - */ - if (n < 67) { - return FastMath.log(binomialCoefficient(n,k)); - } - - /* - * Return the log of binomialCoefficientDouble for values that will not - * overflow binomialCoefficientDouble - */ - if (n < 1030) { - return FastMath.log(binomialCoefficientDouble(n, k)); - } - - if (k > n / 2) { - return binomialCoefficientLog(n, n - k); - } - - /* - * Sum logs for values that could overflow - */ - double logSum = 0; - - // n!/(n-k)! - for (int i = n - k + 1; i <= n; i++) { - logSum += FastMath.log(i); - } - - // divide by k! - for (int i = 2; i <= k; i++) { - logSum -= FastMath.log(i); - } - - return logSum; - } - - /** - * Check binomial preconditions. - * - * @param n Size of the set. - * @param k Size of the subsets to be counted. - * @throws NotPositiveException if {@code n < 0}. - * @throws NumberIsTooLargeException if {@code k > n}. - */ - private static void checkBinomial(final int n, final int k) { - if (n < k) { - throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER, - k, n, true); - } - if (n < 0) { - throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n); - } - } - /** * Returns the * hyperbolic cosine of x. @@ -387,74 +178,6 @@ public final class MathUtils { return (x >= ZS) ? PS : NS; } - /** - *

- * Returns the least common multiple of the absolute value of two numbers, - * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. - *

- * Special cases: - * - * - * @param a Number. - * @param b Number. - * @return the least common multiple, never negative. - * @throws MathArithmeticException if the result cannot be represented as - * a non-negative {@code int} value. - * @since 1.1 - */ - public static int lcm(int a, int b) { - if (a == 0 || b == 0){ - return 0; - } - int lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b)); - if (lcm == Integer.MIN_VALUE) { - throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS, - a, b); - } - return lcm; - } - - /** - *

- * Returns the least common multiple of the absolute value of two numbers, - * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. - *

- * Special cases: - * - * - * @param a Number. - * @param b Number. - * @return the least common multiple, never negative. - * @throws MathArithmeticException if the result cannot be represented - * as a non-negative {@code long} value. - * @since 2.1 - */ - public static long lcm(long a, long b) { - if (a == 0 || b == 0){ - return 0; - } - long lcm = FastMath.abs(mulAndCheck(a / ArithmeticsUtils.gcd(a, b), b)); - if (lcm == Long.MIN_VALUE){ - throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS, - a, b); - } - return lcm; - } - /** *

Returns the * logarithm @@ -475,78 +198,6 @@ public final class MathUtils { return FastMath.log(x)/FastMath.log(base); } - /** - * Multiply two integers, checking for overflow. - * - * @param x Factor. - * @param y Factor. - * @return the product {@code x * y}. - * @throws MathArithmeticException if the result can not be - * represented as an {@code int}. - * @since 1.1 - */ - public static int mulAndCheck(int x, int y) { - long m = ((long)x) * ((long)y); - if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { - throw new MathArithmeticException(); - } - return (int)m; - } - - /** - * Multiply two long integers, checking for overflow. - * - * @param a Factor. - * @param b Factor. - * @return the product {@code a * b}. - * @throws MathArithmeticException if the result can not be represented - * as a {@code long}. - * @since 1.2 - */ - public static long mulAndCheck(long a, long b) { - long ret; - if (a > b) { - // use symmetry to reduce boundary cases - ret = mulAndCheck(b, a); - } else { - if (a < 0) { - if (b < 0) { - // check for positive overflow with negative a, negative b - if (a >= Long.MAX_VALUE / b) { - ret = a * b; - } else { - throw new MathArithmeticException(); - } - } else if (b > 0) { - // check for negative overflow with negative a, positive b - if (Long.MIN_VALUE / b <= a) { - ret = a * b; - } else { - throw new MathArithmeticException(); - - } - } else { - // assert b == 0 - ret = 0; - } - } else if (a > 0) { - // assert a > 0 - // assert b > 0 - - // check for positive overflow with positive a, positive b - if (a <= Long.MAX_VALUE / b) { - ret = a * b; - } else { - throw new MathArithmeticException(); - } - } else { - // assert a == 0 - ret = 0; - } - } - return ret; - } - /** * Normalize an angle in a 2&pi wide interval around a center value. *

This method has three main uses:

diff --git a/src/test/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtilsTest.java b/src/test/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtilsTest.java index 03acca200..d1707c5ef 100644 --- a/src/test/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtilsTest.java +++ b/src/test/java/org/apache/commons/math/analysis/polynomials/PolynomialsUtilsTest.java @@ -18,8 +18,8 @@ package org.apache.commons.math.analysis.polynomials; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.analysis.integration.LegendreGaussIntegrator; +import org.apache.commons.math.util.ArithmeticsUtils; import org.apache.commons.math.util.FastMath; -import org.apache.commons.math.util.MathUtils; import org.apache.commons.math.util.Precision; import org.junit.Assert; import org.junit.Test; @@ -289,7 +289,7 @@ public class PolynomialsUtilsTest { for (int w = 0; w < 10; ++w) { for (int i = 0; i < 10; ++i) { PolynomialFunction jacobi = PolynomialsUtils.createJacobiPolynomial(i, v, w); - double binomial = MathUtils.binomialCoefficient(v + i, i); + double binomial = ArithmeticsUtils.binomialCoefficient(v + i, i); Assert.assertTrue(Precision.equals(binomial, jacobi.value(1.0), 1)); } } diff --git a/src/test/java/org/apache/commons/math/linear/InverseHilbertMatrix.java b/src/test/java/org/apache/commons/math/linear/InverseHilbertMatrix.java index 0c036d01c..bd68cab0d 100644 --- a/src/test/java/org/apache/commons/math/linear/InverseHilbertMatrix.java +++ b/src/test/java/org/apache/commons/math/linear/InverseHilbertMatrix.java @@ -17,7 +17,7 @@ package org.apache.commons.math.linear; import org.apache.commons.math.exception.DimensionMismatchException; -import org.apache.commons.math.util.MathUtils; +import org.apache.commons.math.util.ArithmeticsUtils; /** * This class implements inverses of Hilbert Matrices as @@ -54,13 +54,13 @@ public class InverseHilbertMatrix */ public long getEntry(final int i, final int j) { long val = i + j + 1; - long aux = MathUtils.binomialCoefficient(n + i, n - j - 1); - val = MathUtils.mulAndCheck(val, aux); - aux = MathUtils.binomialCoefficient(n + j, n - i - 1); - val = MathUtils.mulAndCheck(val, aux); - aux = MathUtils.binomialCoefficient(i + j, i); - val = MathUtils.mulAndCheck(val, aux); - val = MathUtils.mulAndCheck(val, aux); + long aux = ArithmeticsUtils.binomialCoefficient(n + i, n - j - 1); + val = ArithmeticsUtils.mulAndCheck(val, aux); + aux = ArithmeticsUtils.binomialCoefficient(n + j, n - i - 1); + val = ArithmeticsUtils.mulAndCheck(val, aux); + aux = ArithmeticsUtils.binomialCoefficient(i + j, i); + val = ArithmeticsUtils.mulAndCheck(val, aux); + val = ArithmeticsUtils.mulAndCheck(val, aux); return ((i + j) & 1) == 0 ? val : -val; } diff --git a/src/test/java/org/apache/commons/math/util/ArithmeticsUtilsTest.java b/src/test/java/org/apache/commons/math/util/ArithmeticsUtilsTest.java index b4eba0fde..1753d7d6d 100644 --- a/src/test/java/org/apache/commons/math/util/ArithmeticsUtilsTest.java +++ b/src/test/java/org/apache/commons/math/util/ArithmeticsUtilsTest.java @@ -17,6 +17,9 @@ package org.apache.commons.math.util; import java.util.ArrayList; +import java.util.HashMap; +import java.util.List; +import java.util.Map; import org.apache.commons.math.exception.MathArithmeticException; import org.apache.commons.math.exception.MathIllegalArgumentException; @@ -30,15 +33,16 @@ import org.junit.Test; * @version $Id$ */ public class ArithmeticsUtilsTest { - /** - * Exact direct multiplication implementation to test against - */ - private long factorial(int n) { - long result = 1; - for (int i = 2; i <= n; i++) { - result *= i; - } - return result; + + /** cached binomial coefficients */ + private static final List> binomialCache = new ArrayList>(); + + /** Verify that b(0,0) = 1 */ + @Test + public void test0Choose0() { + Assert.assertEquals(ArithmeticsUtils.binomialCoefficientDouble(0, 0), 1d, 0); + Assert.assertEquals(ArithmeticsUtils.binomialCoefficientLog(0, 0), 0d, 0); + Assert.assertEquals(ArithmeticsUtils.binomialCoefficient(0, 0), 1); } @Test @@ -58,7 +62,6 @@ public class ArithmeticsUtilsTest { } } - @Test public void testAddAndCheckLong() { long max = Long.MAX_VALUE; @@ -77,68 +80,169 @@ public class ArithmeticsUtilsTest { testAddAndCheckLongFailure(-1L, min); } - private void testAddAndCheckLongFailure(long a, long b) { - try { - ArithmeticsUtils.addAndCheck(a, b); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // success + + @Test + public void testBinomialCoefficient() { + long[] bcoef5 = { + 1, + 5, + 10, + 10, + 5, + 1 }; + long[] bcoef6 = { + 1, + 6, + 15, + 20, + 15, + 6, + 1 }; + for (int i = 0; i < 6; i++) { + Assert.assertEquals("5 choose " + i, bcoef5[i], ArithmeticsUtils.binomialCoefficient(5, i)); + } + for (int i = 0; i < 7; i++) { + Assert.assertEquals("6 choose " + i, bcoef6[i], ArithmeticsUtils.binomialCoefficient(6, i)); + } + + for (int n = 1; n < 10; n++) { + for (int k = 0; k <= n; k++) { + Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficient(n, k)); + Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), ArithmeticsUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE); + Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), ArithmeticsUtils.binomialCoefficientLog(n, k), 10E-12); + } + } + + int[] n = { 34, 66, 100, 1500, 1500 }; + int[] k = { 17, 33, 10, 1500 - 4, 4 }; + for (int i = 0; i < n.length; i++) { + long expected = binomialCoefficient(n[i], k[i]); + Assert.assertEquals(n[i] + " choose " + k[i], expected, + ArithmeticsUtils.binomialCoefficient(n[i], k[i])); + Assert.assertEquals(n[i] + " choose " + k[i], expected, + ArithmeticsUtils.binomialCoefficientDouble(n[i], k[i]), 0.0); + Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected), + ArithmeticsUtils.binomialCoefficientLog(n[i], k[i]), 0.0); } } @Test - public void testSubAndCheck() { - int big = Integer.MAX_VALUE; - int bigNeg = Integer.MIN_VALUE; - Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0)); - Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1)); - Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big)); + public void testBinomialCoefficientFail() { try { - ArithmeticsUtils.subAndCheck(big, -1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { + ArithmeticsUtils.binomialCoefficient(4, 5); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored + } + + try { + ArithmeticsUtils.binomialCoefficientDouble(4, 5); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored + } + + try { + ArithmeticsUtils.binomialCoefficientLog(4, 5); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored + } + + try { + ArithmeticsUtils.binomialCoefficient(-1, -2); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored } try { - ArithmeticsUtils.subAndCheck(bigNeg, 1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { + ArithmeticsUtils.binomialCoefficientDouble(-1, -2); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored } + try { + ArithmeticsUtils.binomialCoefficientLog(-1, -2); + Assert.fail("expecting MathIllegalArgumentException"); + } catch (MathIllegalArgumentException ex) { + // ignored + } + + try { + ArithmeticsUtils.binomialCoefficient(67, 30); + Assert.fail("expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + // ignored + } + try { + ArithmeticsUtils.binomialCoefficient(67, 34); + Assert.fail("expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + // ignored + } + double x = ArithmeticsUtils.binomialCoefficientDouble(1030, 515); + Assert.assertTrue("expecting infinite binomial coefficient", Double + .isInfinite(x)); } + /** + * Tests correctness for large n and sharpness of upper bound in API doc + * JIRA: MATH-241 + */ @Test - public void testSubAndCheckErrorMessage() { - int big = Integer.MAX_VALUE; + public void testBinomialCoefficientLarge() throws Exception { + // This tests all legal and illegal values for n <= 200. + for (int n = 0; n <= 200; n++) { + for (int k = 0; k <= n; k++) { + long ourResult = -1; + long exactResult = -1; + boolean shouldThrow = false; + boolean didThrow = false; + try { + ourResult = ArithmeticsUtils.binomialCoefficient(n, k); + } catch (MathArithmeticException ex) { + didThrow = true; + } + try { + exactResult = binomialCoefficient(n, k); + } catch (MathArithmeticException ex) { + shouldThrow = true; + } + Assert.assertEquals(n + " choose " + k, exactResult, ourResult); + Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow); + Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow)); + + if (!shouldThrow && exactResult > 1) { + Assert.assertEquals(n + " choose " + k, 1., + ArithmeticsUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10); + Assert.assertEquals(n + " choose " + k, 1, + ArithmeticsUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10); + } + } + } + + long ourResult = ArithmeticsUtils.binomialCoefficient(300, 3); + long exactResult = binomialCoefficient(300, 3); + Assert.assertEquals(exactResult, ourResult); + + ourResult = ArithmeticsUtils.binomialCoefficient(700, 697); + exactResult = binomialCoefficient(700, 697); + Assert.assertEquals(exactResult, ourResult); + + // This one should throw try { - ArithmeticsUtils.subAndCheck(big, -1); + ArithmeticsUtils.binomialCoefficient(700, 300); Assert.fail("Expecting MathArithmeticException"); } catch (MathArithmeticException ex) { - Assert.assertTrue(ex.getMessage().length() > 1); + // Expected } - } - @Test - public void testSubAndCheckLong() { - long max = Long.MAX_VALUE; - long min = Long.MIN_VALUE; - Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0)); - Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0)); - Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max)); - Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1)); - // min == -1-max - Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max)); - Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max)); - testSubAndCheckLongFailure(0L, min); - testSubAndCheckLongFailure(max, -1L); - testSubAndCheckLongFailure(min, 1L); - } - - private void testSubAndCheckLongFailure(long a, long b) { - try { - ArithmeticsUtils.subAndCheck(a, b); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // success - } + int n = 10000; + ourResult = ArithmeticsUtils.binomialCoefficient(n, 3); + exactResult = binomialCoefficient(n, 3); + Assert.assertEquals(exactResult, ourResult); + Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10); + Assert.assertEquals(1, ArithmeticsUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10); } @@ -184,7 +288,6 @@ public class ArithmeticsUtilsTest { Assert.assertTrue("expecting infinite factorial value", Double.isInfinite(ArithmeticsUtils.factorialDouble(171))); } - @Test public void testGcd() { int a = 30; @@ -236,6 +339,30 @@ public class ArithmeticsUtilsTest { } } + @Test + public void testGcdConsistency() { + int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131}; + ArrayList primes = new ArrayList(); + for (int i = 0; i < primeList.length; i++) { + primes.add(Integer.valueOf(primeList[i])); + } + RandomDataImpl randomData = new RandomDataImpl(); + for (int i = 0; i < 20; i++) { + Object[] sample = randomData.nextSample(primes, 4); + int p1 = ((Integer) sample[0]).intValue(); + int p2 = ((Integer) sample[1]).intValue(); + int p3 = ((Integer) sample[2]).intValue(); + int p4 = ((Integer) sample[3]).intValue(); + int i1 = p1 * p2 * p3; + int i2 = p1 * p2 * p4; + int gcd = p1 * p2; + Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2)); + long l1 = i1; + long l2 = i2; + Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2)); + } + } + @Test public void testGcdLong(){ long a = 30; @@ -289,27 +416,262 @@ public class ArithmeticsUtilsTest { } } + @Test - public void testGcdConsistency() { - int[] primeList = {19, 23, 53, 67, 73, 79, 101, 103, 111, 131}; - ArrayList primes = new ArrayList(); - for (int i = 0; i < primeList.length; i++) { - primes.add(Integer.valueOf(primeList[i])); + public void testLcm() { + int a = 30; + int b = 50; + int c = 77; + + Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b)); + Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0)); + Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b)); + Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b)); + Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c)); + + // Assert that no intermediate value overflows: + // The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b) + Assert.assertEquals((1<<20)*15, ArithmeticsUtils.lcm((1<<20)*3, (1<<20)*5)); + + // Special case + Assert.assertEquals(0, ArithmeticsUtils.lcm(0, 0)); + + try { + // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int + ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected } - RandomDataImpl randomData = new RandomDataImpl(); - for (int i = 0; i < 20; i++) { - Object[] sample = randomData.nextSample(primes, 4); - int p1 = ((Integer) sample[0]).intValue(); - int p2 = ((Integer) sample[1]).intValue(); - int p3 = ((Integer) sample[2]).intValue(); - int p4 = ((Integer) sample[3]).intValue(); - int i1 = p1 * p2 * p3; - int i2 = p1 * p2 * p4; - int gcd = p1 * p2; - Assert.assertEquals(gcd, ArithmeticsUtils.gcd(i1, i2)); - long l1 = i1; - long l2 = i2; - Assert.assertEquals(gcd, ArithmeticsUtils.gcd(l1, l2)); + + try { + // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int + ArithmeticsUtils.lcm(Integer.MIN_VALUE, 1<<20); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected + } + + try { + ArithmeticsUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected } } + + @Test + public void testLcmLong() { + long a = 30; + long b = 50; + long c = 77; + + Assert.assertEquals(0, ArithmeticsUtils.lcm(0, b)); + Assert.assertEquals(0, ArithmeticsUtils.lcm(a, 0)); + Assert.assertEquals(b, ArithmeticsUtils.lcm(1, b)); + Assert.assertEquals(a, ArithmeticsUtils.lcm(a, 1)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(a, b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(a, -b)); + Assert.assertEquals(150, ArithmeticsUtils.lcm(-a, -b)); + Assert.assertEquals(2310, ArithmeticsUtils.lcm(a, c)); + + Assert.assertEquals(Long.MAX_VALUE, ArithmeticsUtils.lcm(60247241209L, 153092023L)); + + // Assert that no intermediate value overflows: + // The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b) + Assert.assertEquals((1L<<50)*15, ArithmeticsUtils.lcm((1L<<45)*3, (1L<<50)*5)); + + // Special case + Assert.assertEquals(0L, ArithmeticsUtils.lcm(0L, 0L)); + + try { + // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int + ArithmeticsUtils.lcm(Long.MIN_VALUE, 1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected + } + + try { + // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int + ArithmeticsUtils.lcm(Long.MIN_VALUE, 1<<20); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected + } + + Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1), + ArithmeticsUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1)); + try { + ArithmeticsUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException expected) { + // expected + } + } + + @Test + public void testMulAndCheck() { + int big = Integer.MAX_VALUE; + int bigNeg = Integer.MIN_VALUE; + Assert.assertEquals(big, ArithmeticsUtils.mulAndCheck(big, 1)); + try { + ArithmeticsUtils.mulAndCheck(big, 2); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + } + try { + ArithmeticsUtils.mulAndCheck(bigNeg, 2); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + } + } + + @Test + public void testMulAndCheckLong() { + long max = Long.MAX_VALUE; + long min = Long.MIN_VALUE; + Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(max, 1L)); + Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min, 1L)); + Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(max, 0L)); + Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(min, 0L)); + Assert.assertEquals(max, ArithmeticsUtils.mulAndCheck(1L, max)); + Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(1L, min)); + Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, max)); + Assert.assertEquals(0L, ArithmeticsUtils.mulAndCheck(0L, min)); + Assert.assertEquals(1L, ArithmeticsUtils.mulAndCheck(-1L, -1L)); + Assert.assertEquals(min, ArithmeticsUtils.mulAndCheck(min / 2, 2)); + testMulAndCheckLongFailure(max, 2L); + testMulAndCheckLongFailure(2L, max); + testMulAndCheckLongFailure(min, 2L); + testMulAndCheckLongFailure(2L, min); + testMulAndCheckLongFailure(min, -1L); + testMulAndCheckLongFailure(-1L, min); + } + + @Test + public void testSubAndCheck() { + int big = Integer.MAX_VALUE; + int bigNeg = Integer.MIN_VALUE; + Assert.assertEquals(big, ArithmeticsUtils.subAndCheck(big, 0)); + Assert.assertEquals(bigNeg + 1, ArithmeticsUtils.subAndCheck(bigNeg, -1)); + Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(bigNeg, -big)); + try { + ArithmeticsUtils.subAndCheck(big, -1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + } + try { + ArithmeticsUtils.subAndCheck(bigNeg, 1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + } + } + + @Test + public void testSubAndCheckErrorMessage() { + int big = Integer.MAX_VALUE; + try { + ArithmeticsUtils.subAndCheck(big, -1); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + Assert.assertTrue(ex.getMessage().length() > 1); + } + } + + @Test + public void testSubAndCheckLong() { + long max = Long.MAX_VALUE; + long min = Long.MIN_VALUE; + Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(max, 0)); + Assert.assertEquals(min, ArithmeticsUtils.subAndCheck(min, 0)); + Assert.assertEquals(-max, ArithmeticsUtils.subAndCheck(0, max)); + Assert.assertEquals(min + 1, ArithmeticsUtils.subAndCheck(min, -1)); + // min == -1-max + Assert.assertEquals(-1, ArithmeticsUtils.subAndCheck(-max - 1, -max)); + Assert.assertEquals(max, ArithmeticsUtils.subAndCheck(-1, -1 - max)); + testSubAndCheckLongFailure(0L, min); + testSubAndCheckLongFailure(max, -1L); + testSubAndCheckLongFailure(min, 1L); + } + + /** + * Exact (caching) recursive implementation to test against + */ + private long binomialCoefficient(int n, int k) throws MathArithmeticException { + if (binomialCache.size() > n) { + Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k)); + if (cachedResult != null) { + return cachedResult.longValue(); + } + } + long result = -1; + if ((n == k) || (k == 0)) { + result = 1; + } else if ((k == 1) || (k == n - 1)) { + result = n; + } else { + // Reduce stack depth for larger values of n + if (k < n - 100) { + binomialCoefficient(n - 100, k); + } + if (k > 100) { + binomialCoefficient(n - 100, k - 100); + } + result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1), + binomialCoefficient(n - 1, k)); + } + if (result == -1) { + throw new MathArithmeticException(); + } + for (int i = binomialCache.size(); i < n + 1; i++) { + binomialCache.add(new HashMap()); + } + binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result)); + return result; + } + + /** + * Exact direct multiplication implementation to test against + */ + private long factorial(int n) { + long result = 1; + for (int i = 2; i <= n; i++) { + result *= i; + } + return result; + } + + private void testAddAndCheckLongFailure(long a, long b) { + try { + ArithmeticsUtils.addAndCheck(a, b); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + // success + } + } + + private void testMulAndCheckLongFailure(long a, long b) { + try { + ArithmeticsUtils.mulAndCheck(a, b); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + // success + } + } + + private void testSubAndCheckLongFailure(long a, long b) { + try { + ArithmeticsUtils.subAndCheck(a, b); + Assert.fail("Expecting MathArithmeticException"); + } catch (MathArithmeticException ex) { + // success + } + + } } diff --git a/src/test/java/org/apache/commons/math/util/MathUtilsTest.java b/src/test/java/org/apache/commons/math/util/MathUtilsTest.java index 1a32462dc..6a3ddfd9f 100644 --- a/src/test/java/org/apache/commons/math/util/MathUtilsTest.java +++ b/src/test/java/org/apache/commons/math/util/MathUtilsTest.java @@ -15,11 +15,6 @@ package org.apache.commons.math.util; import java.math.BigDecimal; import java.math.BigInteger; -import java.util.ArrayList; -import java.util.Arrays; -import java.util.HashMap; -import java.util.List; -import java.util.Map; import org.apache.commons.math.TestUtils; @@ -38,219 +33,6 @@ import org.junit.Test; * 2007) $ */ public final class MathUtilsTest { - - /** cached binomial coefficients */ - private static final List> binomialCache = new ArrayList>(); - - /** - * Exact (caching) recursive implementation to test against - */ - private long binomialCoefficient(int n, int k) throws MathArithmeticException { - if (binomialCache.size() > n) { - Long cachedResult = binomialCache.get(n).get(Integer.valueOf(k)); - if (cachedResult != null) { - return cachedResult.longValue(); - } - } - long result = -1; - if ((n == k) || (k == 0)) { - result = 1; - } else if ((k == 1) || (k == n - 1)) { - result = n; - } else { - // Reduce stack depth for larger values of n - if (k < n - 100) { - binomialCoefficient(n - 100, k); - } - if (k > 100) { - binomialCoefficient(n - 100, k - 100); - } - result = ArithmeticsUtils.addAndCheck(binomialCoefficient(n - 1, k - 1), - binomialCoefficient(n - 1, k)); - } - if (result == -1) { - throw new MathArithmeticException(); - } - for (int i = binomialCache.size(); i < n + 1; i++) { - binomialCache.add(new HashMap()); - } - binomialCache.get(n).put(Integer.valueOf(k), Long.valueOf(result)); - return result; - } - - /** Verify that b(0,0) = 1 */ - @Test - public void test0Choose0() { - Assert.assertEquals(MathUtils.binomialCoefficientDouble(0, 0), 1d, 0); - Assert.assertEquals(MathUtils.binomialCoefficientLog(0, 0), 0d, 0); - Assert.assertEquals(MathUtils.binomialCoefficient(0, 0), 1); - } - - @Test - public void testBinomialCoefficient() { - long[] bcoef5 = { - 1, - 5, - 10, - 10, - 5, - 1 }; - long[] bcoef6 = { - 1, - 6, - 15, - 20, - 15, - 6, - 1 }; - for (int i = 0; i < 6; i++) { - Assert.assertEquals("5 choose " + i, bcoef5[i], MathUtils.binomialCoefficient(5, i)); - } - for (int i = 0; i < 7; i++) { - Assert.assertEquals("6 choose " + i, bcoef6[i], MathUtils.binomialCoefficient(6, i)); - } - - for (int n = 1; n < 10; n++) { - for (int k = 0; k <= n; k++) { - Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficient(n, k)); - Assert.assertEquals(n + " choose " + k, binomialCoefficient(n, k), MathUtils.binomialCoefficientDouble(n, k), Double.MIN_VALUE); - Assert.assertEquals(n + " choose " + k, FastMath.log(binomialCoefficient(n, k)), MathUtils.binomialCoefficientLog(n, k), 10E-12); - } - } - - int[] n = { 34, 66, 100, 1500, 1500 }; - int[] k = { 17, 33, 10, 1500 - 4, 4 }; - for (int i = 0; i < n.length; i++) { - long expected = binomialCoefficient(n[i], k[i]); - Assert.assertEquals(n[i] + " choose " + k[i], expected, - MathUtils.binomialCoefficient(n[i], k[i])); - Assert.assertEquals(n[i] + " choose " + k[i], expected, - MathUtils.binomialCoefficientDouble(n[i], k[i]), 0.0); - Assert.assertEquals("log(" + n[i] + " choose " + k[i] + ")", FastMath.log(expected), - MathUtils.binomialCoefficientLog(n[i], k[i]), 0.0); - } - } - - /** - * Tests correctness for large n and sharpness of upper bound in API doc - * JIRA: MATH-241 - */ - @Test - public void testBinomialCoefficientLarge() throws Exception { - // This tests all legal and illegal values for n <= 200. - for (int n = 0; n <= 200; n++) { - for (int k = 0; k <= n; k++) { - long ourResult = -1; - long exactResult = -1; - boolean shouldThrow = false; - boolean didThrow = false; - try { - ourResult = MathUtils.binomialCoefficient(n, k); - } catch (MathArithmeticException ex) { - didThrow = true; - } - try { - exactResult = binomialCoefficient(n, k); - } catch (MathArithmeticException ex) { - shouldThrow = true; - } - Assert.assertEquals(n + " choose " + k, exactResult, ourResult); - Assert.assertEquals(n + " choose " + k, shouldThrow, didThrow); - Assert.assertTrue(n + " choose " + k, (n > 66 || !didThrow)); - - if (!shouldThrow && exactResult > 1) { - Assert.assertEquals(n + " choose " + k, 1., - MathUtils.binomialCoefficientDouble(n, k) / exactResult, 1e-10); - Assert.assertEquals(n + " choose " + k, 1, - MathUtils.binomialCoefficientLog(n, k) / FastMath.log(exactResult), 1e-10); - } - } - } - - long ourResult = MathUtils.binomialCoefficient(300, 3); - long exactResult = binomialCoefficient(300, 3); - Assert.assertEquals(exactResult, ourResult); - - ourResult = MathUtils.binomialCoefficient(700, 697); - exactResult = binomialCoefficient(700, 697); - Assert.assertEquals(exactResult, ourResult); - - // This one should throw - try { - MathUtils.binomialCoefficient(700, 300); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // Expected - } - - int n = 10000; - ourResult = MathUtils.binomialCoefficient(n, 3); - exactResult = binomialCoefficient(n, 3); - Assert.assertEquals(exactResult, ourResult); - Assert.assertEquals(1, MathUtils.binomialCoefficientDouble(n, 3) / exactResult, 1e-10); - Assert.assertEquals(1, MathUtils.binomialCoefficientLog(n, 3) / FastMath.log(exactResult), 1e-10); - - } - - @Test - public void testBinomialCoefficientFail() { - try { - MathUtils.binomialCoefficient(4, 5); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - - try { - MathUtils.binomialCoefficientDouble(4, 5); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - - try { - MathUtils.binomialCoefficientLog(4, 5); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - - try { - MathUtils.binomialCoefficient(-1, -2); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - try { - MathUtils.binomialCoefficientDouble(-1, -2); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - try { - MathUtils.binomialCoefficientLog(-1, -2); - Assert.fail("expecting MathIllegalArgumentException"); - } catch (MathIllegalArgumentException ex) { - // ignored - } - - try { - MathUtils.binomialCoefficient(67, 30); - Assert.fail("expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // ignored - } - try { - MathUtils.binomialCoefficient(67, 34); - Assert.fail("expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // ignored - } - double x = MathUtils.binomialCoefficientDouble(1030, 515); - Assert.assertTrue("expecting infinite binomial coefficient", Double - .isInfinite(x)); - } - @Test public void testCosh() { double x = 3.0; @@ -380,104 +162,6 @@ public final class MathUtilsTest { Assert.assertEquals((short)(-1), MathUtils.indicator((short)(-2))); } - @Test - public void testLcm() { - int a = 30; - int b = 50; - int c = 77; - - Assert.assertEquals(0, MathUtils.lcm(0, b)); - Assert.assertEquals(0, MathUtils.lcm(a, 0)); - Assert.assertEquals(b, MathUtils.lcm(1, b)); - Assert.assertEquals(a, MathUtils.lcm(a, 1)); - Assert.assertEquals(150, MathUtils.lcm(a, b)); - Assert.assertEquals(150, MathUtils.lcm(-a, b)); - Assert.assertEquals(150, MathUtils.lcm(a, -b)); - Assert.assertEquals(150, MathUtils.lcm(-a, -b)); - Assert.assertEquals(2310, MathUtils.lcm(a, c)); - - // Assert that no intermediate value overflows: - // The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b) - Assert.assertEquals((1<<20)*15, MathUtils.lcm((1<<20)*3, (1<<20)*5)); - - // Special case - Assert.assertEquals(0, MathUtils.lcm(0, 0)); - - try { - // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int - MathUtils.lcm(Integer.MIN_VALUE, 1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - - try { - // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int - MathUtils.lcm(Integer.MIN_VALUE, 1<<20); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - - try { - MathUtils.lcm(Integer.MAX_VALUE, Integer.MAX_VALUE - 1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - } - - @Test - public void testLcmLong() { - long a = 30; - long b = 50; - long c = 77; - - Assert.assertEquals(0, MathUtils.lcm(0, b)); - Assert.assertEquals(0, MathUtils.lcm(a, 0)); - Assert.assertEquals(b, MathUtils.lcm(1, b)); - Assert.assertEquals(a, MathUtils.lcm(a, 1)); - Assert.assertEquals(150, MathUtils.lcm(a, b)); - Assert.assertEquals(150, MathUtils.lcm(-a, b)); - Assert.assertEquals(150, MathUtils.lcm(a, -b)); - Assert.assertEquals(150, MathUtils.lcm(-a, -b)); - Assert.assertEquals(2310, MathUtils.lcm(a, c)); - - Assert.assertEquals(Long.MAX_VALUE, MathUtils.lcm(60247241209L, 153092023L)); - - // Assert that no intermediate value overflows: - // The naive implementation of lcm(a,b) would be (a*b)/gcd(a,b) - Assert.assertEquals((1L<<50)*15, MathUtils.lcm((1L<<45)*3, (1L<<50)*5)); - - // Special case - Assert.assertEquals(0L, MathUtils.lcm(0L, 0L)); - - try { - // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int - MathUtils.lcm(Long.MIN_VALUE, 1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - - try { - // lcm == abs(MIN_VALUE) cannot be represented as a nonnegative int - MathUtils.lcm(Long.MIN_VALUE, 1<<20); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - - Assert.assertEquals((long) Integer.MAX_VALUE * (Integer.MAX_VALUE - 1), - MathUtils.lcm((long)Integer.MAX_VALUE, Integer.MAX_VALUE - 1)); - try { - MathUtils.lcm(Long.MAX_VALUE, Long.MAX_VALUE - 1); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException expected) { - // expected - } - } - @Test public void testLog() { Assert.assertEquals(2.0, MathUtils.log(2, 4), 0); @@ -489,54 +173,6 @@ public final class MathUtilsTest { Assert.assertEquals(Double.NEGATIVE_INFINITY, MathUtils.log(10, 0), 0); } - @Test - public void testMulAndCheck() { - int big = Integer.MAX_VALUE; - int bigNeg = Integer.MIN_VALUE; - Assert.assertEquals(big, MathUtils.mulAndCheck(big, 1)); - try { - MathUtils.mulAndCheck(big, 2); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - } - try { - MathUtils.mulAndCheck(bigNeg, 2); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - } - } - - @Test - public void testMulAndCheckLong() { - long max = Long.MAX_VALUE; - long min = Long.MIN_VALUE; - Assert.assertEquals(max, MathUtils.mulAndCheck(max, 1L)); - Assert.assertEquals(min, MathUtils.mulAndCheck(min, 1L)); - Assert.assertEquals(0L, MathUtils.mulAndCheck(max, 0L)); - Assert.assertEquals(0L, MathUtils.mulAndCheck(min, 0L)); - Assert.assertEquals(max, MathUtils.mulAndCheck(1L, max)); - Assert.assertEquals(min, MathUtils.mulAndCheck(1L, min)); - Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, max)); - Assert.assertEquals(0L, MathUtils.mulAndCheck(0L, min)); - Assert.assertEquals(1L, MathUtils.mulAndCheck(-1L, -1L)); - Assert.assertEquals(min, MathUtils.mulAndCheck(min / 2, 2)); - testMulAndCheckLongFailure(max, 2L); - testMulAndCheckLongFailure(2L, max); - testMulAndCheckLongFailure(min, 2L); - testMulAndCheckLongFailure(2L, min); - testMulAndCheckLongFailure(min, -1L); - testMulAndCheckLongFailure(-1L, min); - } - - private void testMulAndCheckLongFailure(long a, long b) { - try { - MathUtils.mulAndCheck(a, b); - Assert.fail("Expecting MathArithmeticException"); - } catch (MathArithmeticException ex) { - // success - } - } - @Test public void testNormalizeAngle() { for (double a = -15.0; a <= 15.0; a += 0.1) {