diff --git a/src/main/java/org/apache/commons/math/filter/DefaultMeasurementModel.java b/src/main/java/org/apache/commons/math/filter/DefaultMeasurementModel.java index f946a01cc..7ce703c6e 100644 --- a/src/main/java/org/apache/commons/math/filter/DefaultMeasurementModel.java +++ b/src/main/java/org/apache/commons/math/filter/DefaultMeasurementModel.java @@ -23,6 +23,7 @@ import org.apache.commons.math.linear.RealMatrix; * Default implementation of a {@link MeasurementModel} for the use with a * {@link KalmanFilter}. * + * @since 3.0 * @version $Id$ */ public class DefaultMeasurementModel implements MeasurementModel { @@ -42,10 +43,8 @@ public class DefaultMeasurementModel implements MeasurementModel { * Create a new {@link MeasurementModel}, taking double arrays as input * parameters for the respective measurement matrix and noise. * - * @param measMatrix - * the measurement matrix - * @param measNoise - * the measurement noise matrix + * @param measMatrix the measurement matrix + * @param measNoise the measurement noise matrix */ public DefaultMeasurementModel(final double[][] measMatrix, final double[][] measNoise) { @@ -57,10 +56,8 @@ public class DefaultMeasurementModel implements MeasurementModel { * Create a new {@link MeasurementModel}, taking {@link RealMatrix} objects * as input parameters for the respective measurement matrix and noise. * - * @param measMatrix - * the measurement matrix - * @param measNoise - * the measurement noise matrix + * @param measMatrix the measurement matrix + * @param measNoise the measurement noise matrix */ public DefaultMeasurementModel(final RealMatrix measMatrix, final RealMatrix measNoise) { @@ -68,16 +65,12 @@ public class DefaultMeasurementModel implements MeasurementModel { this.measurementNoise = measNoise; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getMeasurementMatrix() { return measurementMatrix; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getMeasurementNoise() { return measurementNoise; } diff --git a/src/main/java/org/apache/commons/math/filter/DefaultProcessModel.java b/src/main/java/org/apache/commons/math/filter/DefaultProcessModel.java index 619572d04..38473f485 100644 --- a/src/main/java/org/apache/commons/math/filter/DefaultProcessModel.java +++ b/src/main/java/org/apache/commons/math/filter/DefaultProcessModel.java @@ -25,6 +25,7 @@ import org.apache.commons.math.linear.RealVector; * Default implementation of a {@link ProcessModel} for the use with a * {@link KalmanFilter}. * + * @since 3.0 * @version $Id$ */ public class DefaultProcessModel implements ProcessModel { @@ -40,40 +41,30 @@ public class DefaultProcessModel implements ProcessModel { */ private RealMatrix controlMatrix; - /** - * The process noise covariance matrix. - */ + /** The process noise covariance matrix. */ private RealMatrix processNoiseCovMatrix; - /** - * The initial state estimation of the observed process. - */ + /** The initial state estimation of the observed process. */ private RealVector initialStateEstimateVector; - /** - * The initial error covariance matrix of the observed process. - */ + /** The initial error covariance matrix of the observed process. */ private RealMatrix initialErrorCovMatrix; /** * Create a new {@link ProcessModel}, taking double arrays as input * parameters. * - * @param stateTransition - * the state transition matrix - * @param control - * the control matrix - * @param processNoise - * the process noise matrix - * @param initialStateEstimate - * the initial state estimate vector - * @param initialErrorCovariance - * the initial error covariance matrix + * @param stateTransition the state transition matrix + * @param control the control matrix + * @param processNoise the process noise matrix + * @param initialStateEstimate the initial state estimate vector + * @param initialErrorCovariance the initial error covariance matrix */ public DefaultProcessModel(final double[][] stateTransition, - final double[][] control, final double[][] processNoise, - final double[] initialStateEstimate, - final double[][] initialErrorCovariance) { + final double[][] control, + final double[][] processNoise, + final double[] initialStateEstimate, + final double[][] initialErrorCovariance) { this(new Array2DRowRealMatrix(stateTransition), new Array2DRowRealMatrix(control), new Array2DRowRealMatrix(processNoise), @@ -86,15 +77,13 @@ public class DefaultProcessModel implements ProcessModel { * parameters. The initial state estimate and error covariance are omitted * and will be initialized by the {@link KalmanFilter} to default values. * - * @param stateTransition - * the state transition matrix - * @param control - * the control matrix - * @param processNoise - * the process noise matrix + * @param stateTransition the state transition matrix + * @param control the control matrix + * @param processNoise the process noise matrix */ public DefaultProcessModel(final double[][] stateTransition, - final double[][] control, final double[][] processNoise) { + final double[][] control, + final double[][] processNoise) { this(new Array2DRowRealMatrix(stateTransition), new Array2DRowRealMatrix(control), new Array2DRowRealMatrix(processNoise), null, null); @@ -104,21 +93,17 @@ public class DefaultProcessModel implements ProcessModel { * Create a new {@link ProcessModel}, taking double arrays as input * parameters. * - * @param stateTransition - * the state transition matrix - * @param control - * the control matrix - * @param processNoise - * the process noise matrix - * @param initialStateEstimate - * the initial state estimate vector - * @param initialErrorCovariance - * the initial error covariance matrix + * @param stateTransition the state transition matrix + * @param control the control matrix + * @param processNoise the process noise matrix + * @param initialStateEstimate the initial state estimate vector + * @param initialErrorCovariance the initial error covariance matrix */ public DefaultProcessModel(final RealMatrix stateTransition, - final RealMatrix control, final RealMatrix processNoise, - final RealVector initialStateEstimate, - final RealMatrix initialErrorCovariance) { + final RealMatrix control, + final RealMatrix processNoise, + final RealVector initialStateEstimate, + final RealMatrix initialErrorCovariance) { this.stateTransitionMatrix = stateTransition; this.controlMatrix = control; this.processNoiseCovMatrix = processNoise; @@ -126,37 +111,27 @@ public class DefaultProcessModel implements ProcessModel { this.initialErrorCovMatrix = initialErrorCovariance; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getStateTransitionMatrix() { return stateTransitionMatrix; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getControlMatrix() { return controlMatrix; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getProcessNoise() { return processNoiseCovMatrix; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealVector getInitialStateEstimate() { return initialStateEstimateVector; } - /** - * {@inheritDoc} - */ + /** {@inheritDoc} */ public RealMatrix getInitialErrorCovariance() { return initialErrorCovMatrix; } diff --git a/src/main/java/org/apache/commons/math/filter/KalmanFilter.java b/src/main/java/org/apache/commons/math/filter/KalmanFilter.java index 8d322476c..4c70ddac7 100644 --- a/src/main/java/org/apache/commons/math/filter/KalmanFilter.java +++ b/src/main/java/org/apache/commons/math/filter/KalmanFilter.java @@ -78,6 +78,7 @@ import org.apache.commons.math.util.MathUtils; * Kalman filter example by Dan Simon * @see ProcessModel * @see MeasurementModel + * @since 3.0 * @version $Id$ */ public class KalmanFilter { @@ -286,10 +287,9 @@ public class KalmanFilter { /** * Predict the internal state estimation one time step ahead. * - * @param u - * the control vector - * @throws DimensionMismatchException - * if the dimension of the control vector does not fit + * @param u the control vector + * @throws DimensionMismatchException if the dimension of the control + * vector does not fit */ public void predict(final RealVector u) { // sanity checks @@ -318,12 +318,11 @@ public class KalmanFilter { /** * Correct the current state estimate with an actual measurement. * - * @param z - * the measurement vector + * @param z the measurement vector * @throws DimensionMismatchException - * if the dimension of the measurement vector does not fit + * if the dimension of the measurement vector does not fit * @throws org.apache.commons.math.linear.SingularMatrixException - * if the covariance matrix could not be inverted + * if the covariance matrix could not be inverted */ public void correct(final double[] z) { correct(new ArrayRealVector(z)); @@ -332,12 +331,11 @@ public class KalmanFilter { /** * Correct the current state estimate with an actual measurement. * - * @param z - * the measurement vector - * @throws DimensionMismatchException - * if the dimension of the measurement vector does not fit + * @param z the measurement vector + * @throws DimensionMismatchException if the dimension of the + * measurement vector does not fit * @throws org.apache.commons.math.linear.SingularMatrixException - * if the covariance matrix could not be inverted + * if the covariance matrix could not be inverted */ public void correct(final RealVector z) { // sanity checks diff --git a/src/main/java/org/apache/commons/math/filter/MeasurementModel.java b/src/main/java/org/apache/commons/math/filter/MeasurementModel.java index f8be78cd6..026b0da4a 100644 --- a/src/main/java/org/apache/commons/math/filter/MeasurementModel.java +++ b/src/main/java/org/apache/commons/math/filter/MeasurementModel.java @@ -21,6 +21,7 @@ import org.apache.commons.math.linear.RealMatrix; /** * Defines the measurement model for the use with a {@link KalmanFilter}. * + * @since 3.0 * @version $Id$ */ public interface MeasurementModel { diff --git a/src/main/java/org/apache/commons/math/filter/ProcessModel.java b/src/main/java/org/apache/commons/math/filter/ProcessModel.java index 486bcb533..b097a080a 100644 --- a/src/main/java/org/apache/commons/math/filter/ProcessModel.java +++ b/src/main/java/org/apache/commons/math/filter/ProcessModel.java @@ -22,6 +22,7 @@ import org.apache.commons.math.linear.RealVector; /** * Defines the process dynamics model for the use with a {@link KalmanFilter}. * + * @since 3.0 * @version $Id$ */ public interface ProcessModel {