Made method names consistent, added methods to default bias-correction.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@764313 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-04-12 18:51:10 +00:00
parent 3b26eea983
commit 6bb4309b69
2 changed files with 68 additions and 7 deletions

View File

@ -113,7 +113,7 @@ public class Covariance {
public Covariance(RealMatrix matrix, boolean biasCorrected) { public Covariance(RealMatrix matrix, boolean biasCorrected) {
checkSufficientData(matrix); checkSufficientData(matrix);
n = matrix.getRowDimension(); n = matrix.getRowDimension();
covarianceMatrix = computeCovariance(matrix, biasCorrected); covarianceMatrix = computeCovarianceMatrix(matrix, biasCorrected);
} }
/** /**
@ -150,13 +150,13 @@ public class Covariance {
} }
/** /**
* Create a covariance matrix from a matrix whose columns represent * Compute a covariance matrix from a matrix whose columns represent
* covariates. * covariates.
* @param matrix input matrix (must have at least two columns and two rows) * @param matrix input matrix (must have at least two columns and two rows)
* @param biasCorrected determines whether or not covariance estimates are bias-corrected * @param biasCorrected determines whether or not covariance estimates are bias-corrected
* @return covariance matrix * @return covariance matrix
*/ */
protected RealMatrix computeCovariance(RealMatrix matrix, boolean biasCorrected) { protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) {
int dimension = matrix.getColumnDimension(); int dimension = matrix.getColumnDimension();
Variance variance = new Variance(biasCorrected); Variance variance = new Variance(biasCorrected);
RealMatrix outMatrix = new DenseRealMatrix(dimension, dimension); RealMatrix outMatrix = new DenseRealMatrix(dimension, dimension);
@ -171,6 +171,39 @@ public class Covariance {
return outMatrix; return outMatrix;
} }
/**
* Create a covariance matrix from a matrix whose columns represent
* covariates. Covariances are computed using the bias-corrected formula.
* @param matrix input matrix (must have at least two columns and two rows)
* @return covariance matrix
* @see #Covariance
*/
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix) {
return computeCovarianceMatrix(matrix, true);
}
/**
* Compute a covariance matrix from a rectangular array whose columns represent
* covariates.
* @param data input array (must have at least two columns and two rows)
* @param biasCorrected determines whether or not covariance estimates are bias-corrected
* @return covariance matrix
*/
protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) {
return computeCovarianceMatrix(new DenseRealMatrix(data), biasCorrected);
}
/**
* Create a covariance matrix from a rectangual array whose columns represent
* covariates. Covariances are computed using the bias-corrected formula.
* @param data input array (must have at least two columns and two rows)
* @return covariance matrix
* @see #Covariance
*/
protected RealMatrix computeCovarianceMatrix(double[][] data) {
return computeCovarianceMatrix(data, true);
}
/** /**
* Computes the covariance between the two arrays. * Computes the covariance between the two arrays.
* *
@ -206,6 +239,23 @@ public class Covariance {
return biasCorrected ? result * ((double) length / (double)(length - 1)) : result; return biasCorrected ? result * ((double) length / (double)(length - 1)) : result;
} }
/**
* Computes the covariance between the two arrays, using the bias-corrected
* formula.
*
* <p>Array lengths must match and the common length must be at least 2.</p>
*
* @param xArray first data array
* @param yArray second data array
* @return returns the covariance for the two arrays
* @throws IllegalArgumentException if the arrays lengths do not match or
* there is insufficient data
*/
public double covariance(final double[] xArray, final double[] yArray)
throws IllegalArgumentException {
return covariance(xArray, yArray, true);
}
/** /**
* Throws IllegalArgumentException of the matrix does not have at least * Throws IllegalArgumentException of the matrix does not have at least
* two columns and two rows * two columns and two rows

View File

@ -184,8 +184,8 @@ public class CovarianceTest extends TestCase {
* column-by-column covariances * column-by-column covariances
*/ */
public void testConsistency() { public void testConsistency() {
RealMatrix matrix = createRealMatrix(swissData, 47, 5); final RealMatrix matrix = createRealMatrix(swissData, 47, 5);
RealMatrix covarianceMatrix = new Covariance(matrix).getCovarianceMatrix(); final RealMatrix covarianceMatrix = new Covariance(matrix).getCovarianceMatrix();
// Variances on the diagonal // Variances on the diagonal
Variance variance = new Variance(); Variance variance = new Variance();
@ -203,14 +203,25 @@ public class CovarianceTest extends TestCase {
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
repeatedColumns.setColumnMatrix(i, matrix.getColumnMatrix(0)); repeatedColumns.setColumnMatrix(i, matrix.getColumnMatrix(0));
} }
covarianceMatrix = new Covariance(repeatedColumns).getCovarianceMatrix(); RealMatrix repeatedCovarianceMatrix = new Covariance(repeatedColumns).getCovarianceMatrix();
double columnVariance = variance.evaluate(matrix.getColumn(0)); double columnVariance = variance.evaluate(matrix.getColumn(0));
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) { for (int j = 0; j < 3; j++) {
assertEquals(columnVariance, covarianceMatrix.getEntry(i, j), 10E-14); assertEquals(columnVariance, repeatedCovarianceMatrix.getEntry(i, j), 10E-14);
} }
} }
// Check bias-correction defaults
double[][] data = matrix.getData();
TestUtils.assertEquals("Covariances",
covarianceMatrix, new Covariance().computeCovarianceMatrix(data),Double.MIN_VALUE);
TestUtils.assertEquals("Covariances",
covarianceMatrix, new Covariance().computeCovarianceMatrix(data, true),Double.MIN_VALUE);
double[] x = data[0];
double[] y = data[1];
assertEquals(new Covariance().covariance(x, y),
new Covariance().covariance(x, y, true), Double.MIN_VALUE);
} }
protected RealMatrix createRealMatrix(double[] data, int nRows, int nCols) { protected RealMatrix createRealMatrix(double[] data, int nRows, int nCols) {