Remove deprecated classes in package geometry.partitioning.utilities.

This commit is contained in:
tn 2015-02-19 10:01:34 +01:00
parent d0c62a848c
commit 6d50174baa
5 changed files with 0 additions and 1265 deletions

View File

@ -1,634 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.geometry.partitioning.utilities;
/** This class implements AVL trees.
*
* <p>The purpose of this class is to sort elements while allowing
* duplicate elements (i.e. such that {@code a.equals(b)} is
* true). The {@code SortedSet} interface does not allow this, so
* a specific class is needed. Null elements are not allowed.</p>
*
* <p>Since the {@code equals} method is not sufficient to
* differentiate elements, the {@link #delete delete} method is
* implemented using the equality operator.</p>
*
* <p>In order to clearly mark the methods provided here do not have
* the same semantics as the ones specified in the
* {@code SortedSet} interface, different names are used
* ({@code add} has been replaced by {@link #insert insert} and
* {@code remove} has been replaced by {@link #delete
* delete}).</p>
*
* <p>This class is based on the C implementation Georg Kraml has put
* in the public domain. Unfortunately, his <a
* href="www.purists.org/georg/avltree/index.html">page</a> seems not
* to exist any more.</p>
*
* @param <T> the type of the elements
*
* @since 3.0
* @deprecated as of 3.4, this class is not used anymore and considered
* to be out of scope of Apache Commons Math
*/
@Deprecated
public class AVLTree<T extends Comparable<T>> {
/** Top level node. */
private Node top;
/** Build an empty tree.
*/
public AVLTree() {
top = null;
}
/** Insert an element in the tree.
* @param element element to insert (silently ignored if null)
*/
public void insert(final T element) {
if (element != null) {
if (top == null) {
top = new Node(element, null);
} else {
top.insert(element);
}
}
}
/** Delete an element from the tree.
* <p>The element is deleted only if there is a node {@code n}
* containing exactly the element instance specified, i.e. for which
* {@code n.getElement() == element}. This is purposely
* <em>different</em> from the specification of the
* {@code java.util.Set} {@code remove} method (in fact,
* this is the reason why a specific class has been developed).</p>
* @param element element to delete (silently ignored if null)
* @return true if the element was deleted from the tree
*/
public boolean delete(final T element) {
if (element != null) {
for (Node node = getNotSmaller(element); node != null; node = node.getNext()) {
// loop over all elements neither smaller nor larger
// than the specified one
if (node.element == element) {
node.delete();
return true;
} else if (node.element.compareTo(element) > 0) {
// all the remaining elements are known to be larger,
// the element is not in the tree
return false;
}
}
}
return false;
}
/** Check if the tree is empty.
* @return true if the tree is empty
*/
public boolean isEmpty() {
return top == null;
}
/** Get the number of elements of the tree.
* @return number of elements contained in the tree
*/
public int size() {
return (top == null) ? 0 : top.size();
}
/** Get the node whose element is the smallest one in the tree.
* @return the tree node containing the smallest element in the tree
* or null if the tree is empty
* @see #getLargest
* @see #getNotSmaller
* @see #getNotLarger
* @see Node#getPrevious
* @see Node#getNext
*/
public Node getSmallest() {
return (top == null) ? null : top.getSmallest();
}
/** Get the node whose element is the largest one in the tree.
* @return the tree node containing the largest element in the tree
* or null if the tree is empty
* @see #getSmallest
* @see #getNotSmaller
* @see #getNotLarger
* @see Node#getPrevious
* @see Node#getNext
*/
public Node getLargest() {
return (top == null) ? null : top.getLargest();
}
/** Get the node whose element is not smaller than the reference object.
* @param reference reference object (may not be in the tree)
* @return the tree node containing the smallest element not smaller
* than the reference object or null if either the tree is empty or
* all its elements are smaller than the reference object
* @see #getSmallest
* @see #getLargest
* @see #getNotLarger
* @see Node#getPrevious
* @see Node#getNext
*/
public Node getNotSmaller(final T reference) {
Node candidate = null;
for (Node node = top; node != null;) {
if (node.element.compareTo(reference) < 0) {
if (node.right == null) {
return candidate;
}
node = node.right;
} else {
candidate = node;
if (node.left == null) {
return candidate;
}
node = node.left;
}
}
return null;
}
/** Get the node whose element is not larger than the reference object.
* @param reference reference object (may not be in the tree)
* @return the tree node containing the largest element not larger
* than the reference object (in which case the node is guaranteed
* not to be empty) or null if either the tree is empty or all its
* elements are larger than the reference object
* @see #getSmallest
* @see #getLargest
* @see #getNotSmaller
* @see Node#getPrevious
* @see Node#getNext
*/
public Node getNotLarger(final T reference) {
Node candidate = null;
for (Node node = top; node != null;) {
if (node.element.compareTo(reference) > 0) {
if (node.left == null) {
return candidate;
}
node = node.left;
} else {
candidate = node;
if (node.right == null) {
return candidate;
}
node = node.right;
}
}
return null;
}
/** Enum for tree skew factor. */
private static enum Skew {
/** Code for left high trees. */
LEFT_HIGH,
/** Code for right high trees. */
RIGHT_HIGH,
/** Code for Skew.BALANCED trees. */
BALANCED;
}
/** This class implements AVL trees nodes.
* <p>AVL tree nodes implement all the logical structure of the
* tree. Nodes are created by the {@link AVLTree AVLTree} class.</p>
* <p>The nodes are not independant from each other but must obey
* specific balancing constraints and the tree structure is
* rearranged as elements are inserted or deleted from the tree. The
* creation, modification and tree-related navigation methods have
* therefore restricted access. Only the order-related navigation,
* reading and delete methods are public.</p>
* @see AVLTree
*/
public class Node {
/** Element contained in the current node. */
private T element;
/** Left sub-tree. */
private Node left;
/** Right sub-tree. */
private Node right;
/** Parent tree. */
private Node parent;
/** Skew factor. */
private Skew skew;
/** Build a node for a specified element.
* @param element element
* @param parent parent node
*/
Node(final T element, final Node parent) {
this.element = element;
left = null;
right = null;
this.parent = parent;
skew = Skew.BALANCED;
}
/** Get the contained element.
* @return element contained in the node
*/
public T getElement() {
return element;
}
/** Get the number of elements of the tree rooted at this node.
* @return number of elements contained in the tree rooted at this node
*/
int size() {
return 1 + ((left == null) ? 0 : left.size()) + ((right == null) ? 0 : right.size());
}
/** Get the node whose element is the smallest one in the tree
* rooted at this node.
* @return the tree node containing the smallest element in the
* tree rooted at this node or null if the tree is empty
* @see #getLargest
*/
Node getSmallest() {
Node node = this;
while (node.left != null) {
node = node.left;
}
return node;
}
/** Get the node whose element is the largest one in the tree
* rooted at this node.
* @return the tree node containing the largest element in the
* tree rooted at this node or null if the tree is empty
* @see #getSmallest
*/
Node getLargest() {
Node node = this;
while (node.right != null) {
node = node.right;
}
return node;
}
/** Get the node containing the next smaller or equal element.
* @return node containing the next smaller or equal element or
* null if there is no smaller or equal element in the tree
* @see #getNext
*/
public Node getPrevious() {
if (left != null) {
final Node node = left.getLargest();
if (node != null) {
return node;
}
}
for (Node node = this; node.parent != null; node = node.parent) {
if (node != node.parent.left) {
return node.parent;
}
}
return null;
}
/** Get the node containing the next larger or equal element.
* @return node containing the next larger or equal element (in
* which case the node is guaranteed not to be empty) or null if
* there is no larger or equal element in the tree
* @see #getPrevious
*/
public Node getNext() {
if (right != null) {
final Node node = right.getSmallest();
if (node != null) {
return node;
}
}
for (Node node = this; node.parent != null; node = node.parent) {
if (node != node.parent.right) {
return node.parent;
}
}
return null;
}
/** Insert an element in a sub-tree.
* @param newElement element to insert
* @return true if the parent tree should be re-Skew.BALANCED
*/
boolean insert(final T newElement) {
if (newElement.compareTo(this.element) < 0) {
// the inserted element is smaller than the node
if (left == null) {
left = new Node(newElement, this);
return rebalanceLeftGrown();
}
return left.insert(newElement) ? rebalanceLeftGrown() : false;
}
// the inserted element is equal to or greater than the node
if (right == null) {
right = new Node(newElement, this);
return rebalanceRightGrown();
}
return right.insert(newElement) ? rebalanceRightGrown() : false;
}
/** Delete the node from the tree.
*/
public void delete() {
if ((parent == null) && (left == null) && (right == null)) {
// this was the last node, the tree is now empty
element = null;
top = null;
} else {
Node node;
Node child;
boolean leftShrunk;
if ((left == null) && (right == null)) {
node = this;
element = null;
leftShrunk = node == node.parent.left;
child = null;
} else {
node = (left != null) ? left.getLargest() : right.getSmallest();
element = node.element;
leftShrunk = node == node.parent.left;
child = (node.left != null) ? node.left : node.right;
}
node = node.parent;
if (leftShrunk) {
node.left = child;
} else {
node.right = child;
}
if (child != null) {
child.parent = node;
}
while (leftShrunk ? node.rebalanceLeftShrunk() : node.rebalanceRightShrunk()) {
if (node.parent == null) {
return;
}
leftShrunk = node == node.parent.left;
node = node.parent;
}
}
}
/** Re-balance the instance as left sub-tree has grown.
* @return true if the parent tree should be reSkew.BALANCED too
*/
private boolean rebalanceLeftGrown() {
switch (skew) {
case LEFT_HIGH:
if (left.skew == Skew.LEFT_HIGH) {
rotateCW();
skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
} else {
final Skew s = left.right.skew;
left.rotateCCW();
rotateCW();
switch(s) {
case LEFT_HIGH:
left.skew = Skew.BALANCED;
right.skew = Skew.RIGHT_HIGH;
break;
case RIGHT_HIGH:
left.skew = Skew.LEFT_HIGH;
right.skew = Skew.BALANCED;
break;
default:
left.skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
}
skew = Skew.BALANCED;
}
return false;
case RIGHT_HIGH:
skew = Skew.BALANCED;
return false;
default:
skew = Skew.LEFT_HIGH;
return true;
}
}
/** Re-balance the instance as right sub-tree has grown.
* @return true if the parent tree should be reSkew.BALANCED too
*/
private boolean rebalanceRightGrown() {
switch (skew) {
case LEFT_HIGH:
skew = Skew.BALANCED;
return false;
case RIGHT_HIGH:
if (right.skew == Skew.RIGHT_HIGH) {
rotateCCW();
skew = Skew.BALANCED;
left.skew = Skew.BALANCED;
} else {
final Skew s = right.left.skew;
right.rotateCW();
rotateCCW();
switch (s) {
case LEFT_HIGH:
left.skew = Skew.BALANCED;
right.skew = Skew.RIGHT_HIGH;
break;
case RIGHT_HIGH:
left.skew = Skew.LEFT_HIGH;
right.skew = Skew.BALANCED;
break;
default:
left.skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
}
skew = Skew.BALANCED;
}
return false;
default:
skew = Skew.RIGHT_HIGH;
return true;
}
}
/** Re-balance the instance as left sub-tree has shrunk.
* @return true if the parent tree should be reSkew.BALANCED too
*/
private boolean rebalanceLeftShrunk() {
switch (skew) {
case LEFT_HIGH:
skew = Skew.BALANCED;
return true;
case RIGHT_HIGH:
if (right.skew == Skew.RIGHT_HIGH) {
rotateCCW();
skew = Skew.BALANCED;
left.skew = Skew.BALANCED;
return true;
} else if (right.skew == Skew.BALANCED) {
rotateCCW();
skew = Skew.LEFT_HIGH;
left.skew = Skew.RIGHT_HIGH;
return false;
} else {
final Skew s = right.left.skew;
right.rotateCW();
rotateCCW();
switch (s) {
case LEFT_HIGH:
left.skew = Skew.BALANCED;
right.skew = Skew.RIGHT_HIGH;
break;
case RIGHT_HIGH:
left.skew = Skew.LEFT_HIGH;
right.skew = Skew.BALANCED;
break;
default:
left.skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
}
skew = Skew.BALANCED;
return true;
}
default:
skew = Skew.RIGHT_HIGH;
return false;
}
}
/** Re-balance the instance as right sub-tree has shrunk.
* @return true if the parent tree should be reSkew.BALANCED too
*/
private boolean rebalanceRightShrunk() {
switch (skew) {
case RIGHT_HIGH:
skew = Skew.BALANCED;
return true;
case LEFT_HIGH:
if (left.skew == Skew.LEFT_HIGH) {
rotateCW();
skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
return true;
} else if (left.skew == Skew.BALANCED) {
rotateCW();
skew = Skew.RIGHT_HIGH;
right.skew = Skew.LEFT_HIGH;
return false;
} else {
final Skew s = left.right.skew;
left.rotateCCW();
rotateCW();
switch (s) {
case LEFT_HIGH:
left.skew = Skew.BALANCED;
right.skew = Skew.RIGHT_HIGH;
break;
case RIGHT_HIGH:
left.skew = Skew.LEFT_HIGH;
right.skew = Skew.BALANCED;
break;
default:
left.skew = Skew.BALANCED;
right.skew = Skew.BALANCED;
}
skew = Skew.BALANCED;
return true;
}
default:
skew = Skew.LEFT_HIGH;
return false;
}
}
/** Perform a clockwise rotation rooted at the instance.
* <p>The skew factor are not updated by this method, they
* <em>must</em> be updated by the caller</p>
*/
private void rotateCW() {
final T tmpElt = element;
element = left.element;
left.element = tmpElt;
final Node tmpNode = left;
left = tmpNode.left;
tmpNode.left = tmpNode.right;
tmpNode.right = right;
right = tmpNode;
if (left != null) {
left.parent = this;
}
if (right.right != null) {
right.right.parent = right;
}
}
/** Perform a counter-clockwise rotation rooted at the instance.
* <p>The skew factor are not updated by this method, they
* <em>must</em> be updated by the caller</p>
*/
private void rotateCCW() {
final T tmpElt = element;
element = right.element;
right.element = tmpElt;
final Node tmpNode = right;
right = tmpNode.right;
tmpNode.right = tmpNode.left;
tmpNode.left = left;
left = tmpNode;
if (right != null) {
right.parent = this;
}
if (left.left != null) {
left.left.parent = left;
}
}
}
}

View File

@ -1,431 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.geometry.partitioning.utilities;
import java.util.Arrays;
import org.apache.commons.math4.util.FastMath;
/** This class implements an ordering operation for T-uples.
*
* <p>Ordering is done by encoding all components of the T-uple into a
* single scalar value and using this value as the sorting
* key. Encoding is performed using the method invented by Georg
* Cantor in 1877 when he proved it was possible to establish a
* bijection between a line and a plane. The binary representations of
* the components of the T-uple are mixed together to form a single
* scalar. This means that the 2<sup>k</sup> bit of component 0 is
* followed by the 2<sup>k</sup> bit of component 1, then by the
* 2<sup>k</sup> bit of component 2 up to the 2<sup>k</sup> bit of
* component {@code t}, which is followed by the 2<sup>k-1</sup>
* bit of component 0, followed by the 2<sup>k-1</sup> bit of
* component 1 ... The binary representations are extended as needed
* to handle numbers with different scales and a suitable
* 2<sup>p</sup> offset is added to the components in order to avoid
* negative numbers (this offset is adjusted as needed during the
* comparison operations).</p>
*
* <p>The more interesting property of the encoding method for our
* purpose is that it allows to select all the points that are in a
* given range. This is depicted in dimension 2 by the following
* picture:</p>
*
* <img src="doc-files/OrderedTuple.png" />
*
* <p>This picture shows a set of 100000 random 2-D pairs having their
* first component between -50 and +150 and their second component
* between -350 and +50. We wanted to extract all pairs having their
* first component between +30 and +70 and their second component
* between -120 and -30. We built the lower left point at coordinates
* (30, -120) and the upper right point at coordinates (70, -30). All
* points smaller than the lower left point are drawn in red and all
* points larger than the upper right point are drawn in blue. The
* green points are between the two limits. This picture shows that
* all the desired points are selected, along with spurious points. In
* this case, we get 15790 points, 4420 of which really belonging to
* the desired rectangle. It is possible to extract very small
* subsets. As an example extracting from the same 100000 points set
* the points having their first component between +30 and +31 and
* their second component between -91 and -90, we get a subset of 11
* points, 2 of which really belonging to the desired rectangle.</p>
*
* <p>the previous selection technique can be applied in all
* dimensions, still using two points to define the interval. The
* first point will have all its components set to their lower bounds
* while the second point will have all its components set to their
* upper bounds.</p>
*
* <p>T-uples with negative infinite or positive infinite components
* are sorted logically.</p>
*
* <p>Since the specification of the {@code Comparator} interface
* allows only {@code ClassCastException} errors, some arbitrary
* choices have been made to handle specific cases. The rationale for
* these choices is to keep <em>regular</em> and consistent T-uples
* together.</p>
* <ul>
* <li>instances with different dimensions are sorted according to
* their dimension regardless of their components values</li>
* <li>instances with {@code Double.NaN} components are sorted
* after all other ones (even after instances with positive infinite
* components</li>
* <li>instances with both positive and negative infinite components
* are considered as if they had {@code Double.NaN}
* components</li>
* </ul>
*
* @since 3.0
* @deprecated as of 3.4, this class is not used anymore and considered
* to be out of scope of Apache Commons Math
*/
@Deprecated
public class OrderedTuple implements Comparable<OrderedTuple> {
/** Sign bit mask. */
private static final long SIGN_MASK = 0x8000000000000000L;
/** Exponent bits mask. */
private static final long EXPONENT_MASK = 0x7ff0000000000000L;
/** Mantissa bits mask. */
private static final long MANTISSA_MASK = 0x000fffffffffffffL;
/** Implicit MSB for normalized numbers. */
private static final long IMPLICIT_ONE = 0x0010000000000000L;
/** Double components of the T-uple. */
private double[] components;
/** Offset scale. */
private int offset;
/** Least Significant Bit scale. */
private int lsb;
/** Ordering encoding of the double components. */
private long[] encoding;
/** Positive infinity marker. */
private boolean posInf;
/** Negative infinity marker. */
private boolean negInf;
/** Not A Number marker. */
private boolean nan;
/** Build an ordered T-uple from its components.
* @param components double components of the T-uple
*/
public OrderedTuple(final double ... components) {
this.components = components.clone();
int msb = Integer.MIN_VALUE;
lsb = Integer.MAX_VALUE;
posInf = false;
negInf = false;
nan = false;
for (int i = 0; i < components.length; ++i) {
if (Double.isInfinite(components[i])) {
if (components[i] < 0) {
negInf = true;
} else {
posInf = true;
}
} else if (Double.isNaN(components[i])) {
nan = true;
} else {
final long b = Double.doubleToLongBits(components[i]);
final long m = mantissa(b);
if (m != 0) {
final int e = exponent(b);
msb = FastMath.max(msb, e + computeMSB(m));
lsb = FastMath.min(lsb, e + computeLSB(m));
}
}
}
if (posInf && negInf) {
// instance cannot be sorted logically
posInf = false;
negInf = false;
nan = true;
}
if (lsb <= msb) {
// encode the T-upple with the specified offset
encode(msb + 16);
} else {
encoding = new long[] {
0x0L
};
}
}
/** Encode the T-uple with a given offset.
* @param minOffset minimal scale of the offset to add to all
* components (must be greater than the MSBs of all components)
*/
private void encode(final int minOffset) {
// choose an offset with some margins
offset = minOffset + 31;
offset -= offset % 32;
if ((encoding != null) && (encoding.length == 1) && (encoding[0] == 0x0L)) {
// the components are all zeroes
return;
}
// allocate an integer array to encode the components (we use only
// 63 bits per element because there is no unsigned long in Java)
final int neededBits = offset + 1 - lsb;
final int neededLongs = (neededBits + 62) / 63;
encoding = new long[components.length * neededLongs];
// mix the bits from all components
int eIndex = 0;
int shift = 62;
long word = 0x0L;
for (int k = offset; eIndex < encoding.length; --k) {
for (int vIndex = 0; vIndex < components.length; ++vIndex) {
if (getBit(vIndex, k) != 0) {
word |= 0x1L << shift;
}
if (shift-- == 0) {
encoding[eIndex++] = word;
word = 0x0L;
shift = 62;
}
}
}
}
/** Compares this ordered T-uple with the specified object.
* <p>The ordering method is detailed in the general description of
* the class. Its main property is to be consistent with distance:
* geometrically close T-uples stay close to each other when stored
* in a sorted collection using this comparison method.</p>
* <p>T-uples with negative infinite, positive infinite are sorted
* logically.</p>
* <p>Some arbitrary choices have been made to handle specific
* cases. The rationale for these choices is to keep
* <em>normal</em> and consistent T-uples together.</p>
* <ul>
* <li>instances with different dimensions are sorted according to
* their dimension regardless of their components values</li>
* <li>instances with {@code Double.NaN} components are sorted
* after all other ones (evan after instances with positive infinite
* components</li>
* <li>instances with both positive and negative infinite components
* are considered as if they had {@code Double.NaN}
* components</li>
* </ul>
* @param ot T-uple to compare instance with
* @return a negative integer if the instance is less than the
* object, zero if they are equal, or a positive integer if the
* instance is greater than the object
*/
public int compareTo(final OrderedTuple ot) {
if (components.length == ot.components.length) {
if (nan) {
return +1;
} else if (ot.nan) {
return -1;
} else if (negInf || ot.posInf) {
return -1;
} else if (posInf || ot.negInf) {
return +1;
} else {
if (offset < ot.offset) {
encode(ot.offset);
} else if (offset > ot.offset) {
ot.encode(offset);
}
final int limit = FastMath.min(encoding.length, ot.encoding.length);
for (int i = 0; i < limit; ++i) {
if (encoding[i] < ot.encoding[i]) {
return -1;
} else if (encoding[i] > ot.encoding[i]) {
return +1;
}
}
if (encoding.length < ot.encoding.length) {
return -1;
} else if (encoding.length > ot.encoding.length) {
return +1;
} else {
return 0;
}
}
}
return components.length - ot.components.length;
}
/** {@inheritDoc} */
@Override
public boolean equals(final Object other) {
if (this == other) {
return true;
} else if (other instanceof OrderedTuple) {
return compareTo((OrderedTuple) other) == 0;
} else {
return false;
}
}
/** {@inheritDoc} */
@Override
public int hashCode() {
// the following constants are arbitrary small primes
final int multiplier = 37;
final int trueHash = 97;
final int falseHash = 71;
// hash fields and combine them
// (we rely on the multiplier to have different combined weights
// for all int fields and all boolean fields)
int hash = Arrays.hashCode(components);
hash = hash * multiplier + offset;
hash = hash * multiplier + lsb;
hash = hash * multiplier + (posInf ? trueHash : falseHash);
hash = hash * multiplier + (negInf ? trueHash : falseHash);
hash = hash * multiplier + (nan ? trueHash : falseHash);
return hash;
}
/** Get the components array.
* @return array containing the T-uple components
*/
public double[] getComponents() {
return components.clone();
}
/** Extract the sign from the bits of a double.
* @param bits binary representation of the double
* @return sign bit (zero if positive, non zero if negative)
*/
private static long sign(final long bits) {
return bits & SIGN_MASK;
}
/** Extract the exponent from the bits of a double.
* @param bits binary representation of the double
* @return exponent
*/
private static int exponent(final long bits) {
return ((int) ((bits & EXPONENT_MASK) >> 52)) - 1075;
}
/** Extract the mantissa from the bits of a double.
* @param bits binary representation of the double
* @return mantissa
*/
private static long mantissa(final long bits) {
return ((bits & EXPONENT_MASK) == 0) ?
((bits & MANTISSA_MASK) << 1) : // subnormal number
(IMPLICIT_ONE | (bits & MANTISSA_MASK)); // normal number
}
/** Compute the most significant bit of a long.
* @param l long from which the most significant bit is requested
* @return scale of the most significant bit of {@code l},
* or 0 if {@code l} is zero
* @see #computeLSB
*/
private static int computeMSB(final long l) {
long ll = l;
long mask = 0xffffffffL;
int scale = 32;
int msb = 0;
while (scale != 0) {
if ((ll & mask) != ll) {
msb |= scale;
ll >>= scale;
}
scale >>= 1;
mask >>= scale;
}
return msb;
}
/** Compute the least significant bit of a long.
* @param l long from which the least significant bit is requested
* @return scale of the least significant bit of {@code l},
* or 63 if {@code l} is zero
* @see #computeMSB
*/
private static int computeLSB(final long l) {
long ll = l;
long mask = 0xffffffff00000000L;
int scale = 32;
int lsb = 0;
while (scale != 0) {
if ((ll & mask) == ll) {
lsb |= scale;
ll >>= scale;
}
scale >>= 1;
mask >>= scale;
}
return lsb;
}
/** Get a bit from the mantissa of a double.
* @param i index of the component
* @param k scale of the requested bit
* @return the specified bit (either 0 or 1), after the offset has
* been added to the double
*/
private int getBit(final int i, final int k) {
final long bits = Double.doubleToLongBits(components[i]);
final int e = exponent(bits);
if ((k < e) || (k > offset)) {
return 0;
} else if (k == offset) {
return (sign(bits) == 0L) ? 1 : 0;
} else if (k > (e + 52)) {
return (sign(bits) == 0L) ? 0 : 1;
} else {
final long m = (sign(bits) == 0L) ? mantissa(bits) : -mantissa(bits);
return (int) ((m >> (k - e)) & 0x1L);
}
}
}

View File

@ -1,24 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* <p>
* This package provides multidimensional ordering features for partitioning.
* </p>
*
*/
package org.apache.commons.math4.geometry.partitioning.utilities;

View File

@ -1,176 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.geometry.partitioning.utilities;
import org.apache.commons.math4.geometry.partitioning.utilities.AVLTree;
import org.junit.Assert;
import org.junit.Test;
@Deprecated
public class AVLTreeTest {
@Test
public void testInsert() {
// this array in this order allows to pass in all branches
// of the insertion algorithm
int[] array = { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5,
11, 18, 19, 17, 4, 7, 1, 3, 6, 10 };
AVLTree<Integer> tree = buildTree(array);
Assert.assertEquals(array.length, tree.size());
for (int i = 0; i < array.length; ++i) {
Assert.assertEquals(array[i], value(tree.getNotSmaller(new Integer(array[i]))));
}
checkOrder(tree);
}
@Test
public void testDelete1() {
int[][][] arrays = {
{ { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5, 11, 18, 19, 17, 4, 7, 1, 3, 6, 10 },
{ 11, 10, 9, 12, 16, 15, 13, 18, 5, 0, 3, 2, 14, 6, 19, 17, 8, 4, 7, 1 } },
{ { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5, 11, 18, 19, 17, 4, 7, 1, 3, 6, 10 },
{ 0, 17, 14, 15, 16, 18, 6 } },
{ { 6, 2, 7, 8, 1, 4, 3, 5 }, { 8 } },
{ { 6, 2, 7, 8, 1, 4, 5 }, { 8 } },
{ { 3, 7, 2, 1, 5, 8, 4 }, { 1 } },
{ { 3, 7, 2, 1, 5, 8, 6 }, { 1 } }
};
for (int i = 0; i < arrays.length; ++i) {
AVLTree<Integer> tree = buildTree(arrays[i][0]);
Assert.assertTrue(! tree.delete(new Integer(-2000)));
for (int j = 0; j < arrays[i][1].length; ++j) {
Assert.assertTrue(tree.delete(tree.getNotSmaller(new Integer(arrays[i][1][j])).getElement()));
Assert.assertEquals(arrays[i][0].length - j - 1, tree.size());
}
}
}
@Test
public void testNavigation() {
int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
AVLTree<Integer> tree = buildTree(array);
AVLTree<Integer>.Node node = tree.getSmallest();
Assert.assertEquals(array[0], value(node));
for (int i = 0; i < array.length; ++i) {
Assert.assertEquals(array[i], value(node));
node = node.getNext();
}
Assert.assertNull(node);
node = tree.getLargest();
Assert.assertEquals(array[array.length - 1], value(node));
for (int i = array.length - 1; i >= 0; --i) {
Assert.assertEquals(array[i], value(node));
node = node.getPrevious();
}
Assert.assertNull(node);
checkOrder(tree);
}
@Test
public void testSearch() {
int[] array = { 2, 4, 6, 8, 10, 12, 14 };
AVLTree<Integer> tree = buildTree(array);
Assert.assertNull(tree.getNotLarger(new Integer(array[0] - 1)));
Assert.assertNull(tree.getNotSmaller(new Integer(array[array.length - 1] + 1)));
for (int i = 0; i < array.length; ++i) {
Assert.assertEquals(array[i],
value(tree.getNotSmaller(new Integer(array[i] - 1))));
Assert.assertEquals(array[i],
value(tree.getNotLarger(new Integer(array[i] + 1))));
}
checkOrder(tree);
}
@Test
public void testRepetition() {
int[] array = { 1, 1, 3, 3, 4, 5, 6, 7, 7, 7, 7, 7 };
AVLTree<Integer> tree = buildTree(array);
Assert.assertEquals(array.length, tree.size());
AVLTree<Integer>.Node node = tree.getNotSmaller(new Integer(3));
Assert.assertEquals(3, value(node));
Assert.assertEquals(1, value(node.getPrevious()));
Assert.assertEquals(3, value(node.getNext()));
Assert.assertEquals(4, value(node.getNext().getNext()));
node = tree.getNotLarger(new Integer(2));
Assert.assertEquals(1, value(node));
Assert.assertEquals(1, value(node.getPrevious()));
Assert.assertEquals(3, value(node.getNext()));
Assert.assertNull(node.getPrevious().getPrevious());
AVLTree<Integer>.Node otherNode = tree.getNotSmaller(new Integer(1));
Assert.assertTrue(node != otherNode);
Assert.assertEquals(1, value(otherNode));
Assert.assertNull(otherNode.getPrevious());
node = tree.getNotLarger(new Integer(10));
Assert.assertEquals(7, value(node));
Assert.assertNull(node.getNext());
node = node.getPrevious();
Assert.assertEquals(7, value(node));
node = node.getPrevious();
Assert.assertEquals(7, value(node));
node = node.getPrevious();
Assert.assertEquals(7, value(node));
node = node.getPrevious();
Assert.assertEquals(7, value(node));
node = node.getPrevious();
Assert.assertEquals(6, value(node));
checkOrder(tree);
}
private AVLTree<Integer> buildTree(int[] array) {
AVLTree<Integer> tree = new AVLTree<Integer>();
for (int i = 0; i < array.length; ++i) {
tree.insert(new Integer(array[i]));
tree.insert(null);
}
return tree;
}
private int value(AVLTree<Integer>.Node node) {
return node.getElement().intValue();
}
private void checkOrder(AVLTree<Integer> tree) {
AVLTree<Integer>.Node next = null;
for (AVLTree<Integer>.Node node = tree.getSmallest();
node != null;
node = next) {
next = node.getNext();
if (next != null) {
Assert.assertTrue(node.getElement().compareTo(next.getElement()) <= 0);
}
}
}
}