Remove deprecated classes in package geometry.partitioning.utilities.
This commit is contained in:
parent
d0c62a848c
commit
6d50174baa
|
@ -1,634 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.geometry.partitioning.utilities;
|
||||
|
||||
/** This class implements AVL trees.
|
||||
*
|
||||
* <p>The purpose of this class is to sort elements while allowing
|
||||
* duplicate elements (i.e. such that {@code a.equals(b)} is
|
||||
* true). The {@code SortedSet} interface does not allow this, so
|
||||
* a specific class is needed. Null elements are not allowed.</p>
|
||||
*
|
||||
* <p>Since the {@code equals} method is not sufficient to
|
||||
* differentiate elements, the {@link #delete delete} method is
|
||||
* implemented using the equality operator.</p>
|
||||
*
|
||||
* <p>In order to clearly mark the methods provided here do not have
|
||||
* the same semantics as the ones specified in the
|
||||
* {@code SortedSet} interface, different names are used
|
||||
* ({@code add} has been replaced by {@link #insert insert} and
|
||||
* {@code remove} has been replaced by {@link #delete
|
||||
* delete}).</p>
|
||||
*
|
||||
* <p>This class is based on the C implementation Georg Kraml has put
|
||||
* in the public domain. Unfortunately, his <a
|
||||
* href="www.purists.org/georg/avltree/index.html">page</a> seems not
|
||||
* to exist any more.</p>
|
||||
*
|
||||
* @param <T> the type of the elements
|
||||
*
|
||||
* @since 3.0
|
||||
* @deprecated as of 3.4, this class is not used anymore and considered
|
||||
* to be out of scope of Apache Commons Math
|
||||
*/
|
||||
@Deprecated
|
||||
public class AVLTree<T extends Comparable<T>> {
|
||||
|
||||
/** Top level node. */
|
||||
private Node top;
|
||||
|
||||
/** Build an empty tree.
|
||||
*/
|
||||
public AVLTree() {
|
||||
top = null;
|
||||
}
|
||||
|
||||
/** Insert an element in the tree.
|
||||
* @param element element to insert (silently ignored if null)
|
||||
*/
|
||||
public void insert(final T element) {
|
||||
if (element != null) {
|
||||
if (top == null) {
|
||||
top = new Node(element, null);
|
||||
} else {
|
||||
top.insert(element);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Delete an element from the tree.
|
||||
* <p>The element is deleted only if there is a node {@code n}
|
||||
* containing exactly the element instance specified, i.e. for which
|
||||
* {@code n.getElement() == element}. This is purposely
|
||||
* <em>different</em> from the specification of the
|
||||
* {@code java.util.Set} {@code remove} method (in fact,
|
||||
* this is the reason why a specific class has been developed).</p>
|
||||
* @param element element to delete (silently ignored if null)
|
||||
* @return true if the element was deleted from the tree
|
||||
*/
|
||||
public boolean delete(final T element) {
|
||||
if (element != null) {
|
||||
for (Node node = getNotSmaller(element); node != null; node = node.getNext()) {
|
||||
// loop over all elements neither smaller nor larger
|
||||
// than the specified one
|
||||
if (node.element == element) {
|
||||
node.delete();
|
||||
return true;
|
||||
} else if (node.element.compareTo(element) > 0) {
|
||||
// all the remaining elements are known to be larger,
|
||||
// the element is not in the tree
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/** Check if the tree is empty.
|
||||
* @return true if the tree is empty
|
||||
*/
|
||||
public boolean isEmpty() {
|
||||
return top == null;
|
||||
}
|
||||
|
||||
|
||||
/** Get the number of elements of the tree.
|
||||
* @return number of elements contained in the tree
|
||||
*/
|
||||
public int size() {
|
||||
return (top == null) ? 0 : top.size();
|
||||
}
|
||||
|
||||
/** Get the node whose element is the smallest one in the tree.
|
||||
* @return the tree node containing the smallest element in the tree
|
||||
* or null if the tree is empty
|
||||
* @see #getLargest
|
||||
* @see #getNotSmaller
|
||||
* @see #getNotLarger
|
||||
* @see Node#getPrevious
|
||||
* @see Node#getNext
|
||||
*/
|
||||
public Node getSmallest() {
|
||||
return (top == null) ? null : top.getSmallest();
|
||||
}
|
||||
|
||||
/** Get the node whose element is the largest one in the tree.
|
||||
* @return the tree node containing the largest element in the tree
|
||||
* or null if the tree is empty
|
||||
* @see #getSmallest
|
||||
* @see #getNotSmaller
|
||||
* @see #getNotLarger
|
||||
* @see Node#getPrevious
|
||||
* @see Node#getNext
|
||||
*/
|
||||
public Node getLargest() {
|
||||
return (top == null) ? null : top.getLargest();
|
||||
}
|
||||
|
||||
/** Get the node whose element is not smaller than the reference object.
|
||||
* @param reference reference object (may not be in the tree)
|
||||
* @return the tree node containing the smallest element not smaller
|
||||
* than the reference object or null if either the tree is empty or
|
||||
* all its elements are smaller than the reference object
|
||||
* @see #getSmallest
|
||||
* @see #getLargest
|
||||
* @see #getNotLarger
|
||||
* @see Node#getPrevious
|
||||
* @see Node#getNext
|
||||
*/
|
||||
public Node getNotSmaller(final T reference) {
|
||||
Node candidate = null;
|
||||
for (Node node = top; node != null;) {
|
||||
if (node.element.compareTo(reference) < 0) {
|
||||
if (node.right == null) {
|
||||
return candidate;
|
||||
}
|
||||
node = node.right;
|
||||
} else {
|
||||
candidate = node;
|
||||
if (node.left == null) {
|
||||
return candidate;
|
||||
}
|
||||
node = node.left;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
/** Get the node whose element is not larger than the reference object.
|
||||
* @param reference reference object (may not be in the tree)
|
||||
* @return the tree node containing the largest element not larger
|
||||
* than the reference object (in which case the node is guaranteed
|
||||
* not to be empty) or null if either the tree is empty or all its
|
||||
* elements are larger than the reference object
|
||||
* @see #getSmallest
|
||||
* @see #getLargest
|
||||
* @see #getNotSmaller
|
||||
* @see Node#getPrevious
|
||||
* @see Node#getNext
|
||||
*/
|
||||
public Node getNotLarger(final T reference) {
|
||||
Node candidate = null;
|
||||
for (Node node = top; node != null;) {
|
||||
if (node.element.compareTo(reference) > 0) {
|
||||
if (node.left == null) {
|
||||
return candidate;
|
||||
}
|
||||
node = node.left;
|
||||
} else {
|
||||
candidate = node;
|
||||
if (node.right == null) {
|
||||
return candidate;
|
||||
}
|
||||
node = node.right;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
/** Enum for tree skew factor. */
|
||||
private static enum Skew {
|
||||
/** Code for left high trees. */
|
||||
LEFT_HIGH,
|
||||
|
||||
/** Code for right high trees. */
|
||||
RIGHT_HIGH,
|
||||
|
||||
/** Code for Skew.BALANCED trees. */
|
||||
BALANCED;
|
||||
}
|
||||
|
||||
/** This class implements AVL trees nodes.
|
||||
* <p>AVL tree nodes implement all the logical structure of the
|
||||
* tree. Nodes are created by the {@link AVLTree AVLTree} class.</p>
|
||||
* <p>The nodes are not independant from each other but must obey
|
||||
* specific balancing constraints and the tree structure is
|
||||
* rearranged as elements are inserted or deleted from the tree. The
|
||||
* creation, modification and tree-related navigation methods have
|
||||
* therefore restricted access. Only the order-related navigation,
|
||||
* reading and delete methods are public.</p>
|
||||
* @see AVLTree
|
||||
*/
|
||||
public class Node {
|
||||
|
||||
/** Element contained in the current node. */
|
||||
private T element;
|
||||
|
||||
/** Left sub-tree. */
|
||||
private Node left;
|
||||
|
||||
/** Right sub-tree. */
|
||||
private Node right;
|
||||
|
||||
/** Parent tree. */
|
||||
private Node parent;
|
||||
|
||||
/** Skew factor. */
|
||||
private Skew skew;
|
||||
|
||||
/** Build a node for a specified element.
|
||||
* @param element element
|
||||
* @param parent parent node
|
||||
*/
|
||||
Node(final T element, final Node parent) {
|
||||
this.element = element;
|
||||
left = null;
|
||||
right = null;
|
||||
this.parent = parent;
|
||||
skew = Skew.BALANCED;
|
||||
}
|
||||
|
||||
/** Get the contained element.
|
||||
* @return element contained in the node
|
||||
*/
|
||||
public T getElement() {
|
||||
return element;
|
||||
}
|
||||
|
||||
/** Get the number of elements of the tree rooted at this node.
|
||||
* @return number of elements contained in the tree rooted at this node
|
||||
*/
|
||||
int size() {
|
||||
return 1 + ((left == null) ? 0 : left.size()) + ((right == null) ? 0 : right.size());
|
||||
}
|
||||
|
||||
/** Get the node whose element is the smallest one in the tree
|
||||
* rooted at this node.
|
||||
* @return the tree node containing the smallest element in the
|
||||
* tree rooted at this node or null if the tree is empty
|
||||
* @see #getLargest
|
||||
*/
|
||||
Node getSmallest() {
|
||||
Node node = this;
|
||||
while (node.left != null) {
|
||||
node = node.left;
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
/** Get the node whose element is the largest one in the tree
|
||||
* rooted at this node.
|
||||
* @return the tree node containing the largest element in the
|
||||
* tree rooted at this node or null if the tree is empty
|
||||
* @see #getSmallest
|
||||
*/
|
||||
Node getLargest() {
|
||||
Node node = this;
|
||||
while (node.right != null) {
|
||||
node = node.right;
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
/** Get the node containing the next smaller or equal element.
|
||||
* @return node containing the next smaller or equal element or
|
||||
* null if there is no smaller or equal element in the tree
|
||||
* @see #getNext
|
||||
*/
|
||||
public Node getPrevious() {
|
||||
|
||||
if (left != null) {
|
||||
final Node node = left.getLargest();
|
||||
if (node != null) {
|
||||
return node;
|
||||
}
|
||||
}
|
||||
|
||||
for (Node node = this; node.parent != null; node = node.parent) {
|
||||
if (node != node.parent.left) {
|
||||
return node.parent;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
|
||||
}
|
||||
|
||||
/** Get the node containing the next larger or equal element.
|
||||
* @return node containing the next larger or equal element (in
|
||||
* which case the node is guaranteed not to be empty) or null if
|
||||
* there is no larger or equal element in the tree
|
||||
* @see #getPrevious
|
||||
*/
|
||||
public Node getNext() {
|
||||
|
||||
if (right != null) {
|
||||
final Node node = right.getSmallest();
|
||||
if (node != null) {
|
||||
return node;
|
||||
}
|
||||
}
|
||||
|
||||
for (Node node = this; node.parent != null; node = node.parent) {
|
||||
if (node != node.parent.right) {
|
||||
return node.parent;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
|
||||
}
|
||||
|
||||
/** Insert an element in a sub-tree.
|
||||
* @param newElement element to insert
|
||||
* @return true if the parent tree should be re-Skew.BALANCED
|
||||
*/
|
||||
boolean insert(final T newElement) {
|
||||
if (newElement.compareTo(this.element) < 0) {
|
||||
// the inserted element is smaller than the node
|
||||
if (left == null) {
|
||||
left = new Node(newElement, this);
|
||||
return rebalanceLeftGrown();
|
||||
}
|
||||
return left.insert(newElement) ? rebalanceLeftGrown() : false;
|
||||
}
|
||||
|
||||
// the inserted element is equal to or greater than the node
|
||||
if (right == null) {
|
||||
right = new Node(newElement, this);
|
||||
return rebalanceRightGrown();
|
||||
}
|
||||
return right.insert(newElement) ? rebalanceRightGrown() : false;
|
||||
|
||||
}
|
||||
|
||||
/** Delete the node from the tree.
|
||||
*/
|
||||
public void delete() {
|
||||
if ((parent == null) && (left == null) && (right == null)) {
|
||||
// this was the last node, the tree is now empty
|
||||
element = null;
|
||||
top = null;
|
||||
} else {
|
||||
|
||||
Node node;
|
||||
Node child;
|
||||
boolean leftShrunk;
|
||||
if ((left == null) && (right == null)) {
|
||||
node = this;
|
||||
element = null;
|
||||
leftShrunk = node == node.parent.left;
|
||||
child = null;
|
||||
} else {
|
||||
node = (left != null) ? left.getLargest() : right.getSmallest();
|
||||
element = node.element;
|
||||
leftShrunk = node == node.parent.left;
|
||||
child = (node.left != null) ? node.left : node.right;
|
||||
}
|
||||
|
||||
node = node.parent;
|
||||
if (leftShrunk) {
|
||||
node.left = child;
|
||||
} else {
|
||||
node.right = child;
|
||||
}
|
||||
if (child != null) {
|
||||
child.parent = node;
|
||||
}
|
||||
|
||||
while (leftShrunk ? node.rebalanceLeftShrunk() : node.rebalanceRightShrunk()) {
|
||||
if (node.parent == null) {
|
||||
return;
|
||||
}
|
||||
leftShrunk = node == node.parent.left;
|
||||
node = node.parent;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/** Re-balance the instance as left sub-tree has grown.
|
||||
* @return true if the parent tree should be reSkew.BALANCED too
|
||||
*/
|
||||
private boolean rebalanceLeftGrown() {
|
||||
switch (skew) {
|
||||
case LEFT_HIGH:
|
||||
if (left.skew == Skew.LEFT_HIGH) {
|
||||
rotateCW();
|
||||
skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
} else {
|
||||
final Skew s = left.right.skew;
|
||||
left.rotateCCW();
|
||||
rotateCW();
|
||||
switch(s) {
|
||||
case LEFT_HIGH:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.RIGHT_HIGH;
|
||||
break;
|
||||
case RIGHT_HIGH:
|
||||
left.skew = Skew.LEFT_HIGH;
|
||||
right.skew = Skew.BALANCED;
|
||||
break;
|
||||
default:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
}
|
||||
skew = Skew.BALANCED;
|
||||
}
|
||||
return false;
|
||||
case RIGHT_HIGH:
|
||||
skew = Skew.BALANCED;
|
||||
return false;
|
||||
default:
|
||||
skew = Skew.LEFT_HIGH;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/** Re-balance the instance as right sub-tree has grown.
|
||||
* @return true if the parent tree should be reSkew.BALANCED too
|
||||
*/
|
||||
private boolean rebalanceRightGrown() {
|
||||
switch (skew) {
|
||||
case LEFT_HIGH:
|
||||
skew = Skew.BALANCED;
|
||||
return false;
|
||||
case RIGHT_HIGH:
|
||||
if (right.skew == Skew.RIGHT_HIGH) {
|
||||
rotateCCW();
|
||||
skew = Skew.BALANCED;
|
||||
left.skew = Skew.BALANCED;
|
||||
} else {
|
||||
final Skew s = right.left.skew;
|
||||
right.rotateCW();
|
||||
rotateCCW();
|
||||
switch (s) {
|
||||
case LEFT_HIGH:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.RIGHT_HIGH;
|
||||
break;
|
||||
case RIGHT_HIGH:
|
||||
left.skew = Skew.LEFT_HIGH;
|
||||
right.skew = Skew.BALANCED;
|
||||
break;
|
||||
default:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
}
|
||||
skew = Skew.BALANCED;
|
||||
}
|
||||
return false;
|
||||
default:
|
||||
skew = Skew.RIGHT_HIGH;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/** Re-balance the instance as left sub-tree has shrunk.
|
||||
* @return true if the parent tree should be reSkew.BALANCED too
|
||||
*/
|
||||
private boolean rebalanceLeftShrunk() {
|
||||
switch (skew) {
|
||||
case LEFT_HIGH:
|
||||
skew = Skew.BALANCED;
|
||||
return true;
|
||||
case RIGHT_HIGH:
|
||||
if (right.skew == Skew.RIGHT_HIGH) {
|
||||
rotateCCW();
|
||||
skew = Skew.BALANCED;
|
||||
left.skew = Skew.BALANCED;
|
||||
return true;
|
||||
} else if (right.skew == Skew.BALANCED) {
|
||||
rotateCCW();
|
||||
skew = Skew.LEFT_HIGH;
|
||||
left.skew = Skew.RIGHT_HIGH;
|
||||
return false;
|
||||
} else {
|
||||
final Skew s = right.left.skew;
|
||||
right.rotateCW();
|
||||
rotateCCW();
|
||||
switch (s) {
|
||||
case LEFT_HIGH:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.RIGHT_HIGH;
|
||||
break;
|
||||
case RIGHT_HIGH:
|
||||
left.skew = Skew.LEFT_HIGH;
|
||||
right.skew = Skew.BALANCED;
|
||||
break;
|
||||
default:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
}
|
||||
skew = Skew.BALANCED;
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
skew = Skew.RIGHT_HIGH;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/** Re-balance the instance as right sub-tree has shrunk.
|
||||
* @return true if the parent tree should be reSkew.BALANCED too
|
||||
*/
|
||||
private boolean rebalanceRightShrunk() {
|
||||
switch (skew) {
|
||||
case RIGHT_HIGH:
|
||||
skew = Skew.BALANCED;
|
||||
return true;
|
||||
case LEFT_HIGH:
|
||||
if (left.skew == Skew.LEFT_HIGH) {
|
||||
rotateCW();
|
||||
skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
return true;
|
||||
} else if (left.skew == Skew.BALANCED) {
|
||||
rotateCW();
|
||||
skew = Skew.RIGHT_HIGH;
|
||||
right.skew = Skew.LEFT_HIGH;
|
||||
return false;
|
||||
} else {
|
||||
final Skew s = left.right.skew;
|
||||
left.rotateCCW();
|
||||
rotateCW();
|
||||
switch (s) {
|
||||
case LEFT_HIGH:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.RIGHT_HIGH;
|
||||
break;
|
||||
case RIGHT_HIGH:
|
||||
left.skew = Skew.LEFT_HIGH;
|
||||
right.skew = Skew.BALANCED;
|
||||
break;
|
||||
default:
|
||||
left.skew = Skew.BALANCED;
|
||||
right.skew = Skew.BALANCED;
|
||||
}
|
||||
skew = Skew.BALANCED;
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
skew = Skew.LEFT_HIGH;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/** Perform a clockwise rotation rooted at the instance.
|
||||
* <p>The skew factor are not updated by this method, they
|
||||
* <em>must</em> be updated by the caller</p>
|
||||
*/
|
||||
private void rotateCW() {
|
||||
|
||||
final T tmpElt = element;
|
||||
element = left.element;
|
||||
left.element = tmpElt;
|
||||
|
||||
final Node tmpNode = left;
|
||||
left = tmpNode.left;
|
||||
tmpNode.left = tmpNode.right;
|
||||
tmpNode.right = right;
|
||||
right = tmpNode;
|
||||
|
||||
if (left != null) {
|
||||
left.parent = this;
|
||||
}
|
||||
if (right.right != null) {
|
||||
right.right.parent = right;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Perform a counter-clockwise rotation rooted at the instance.
|
||||
* <p>The skew factor are not updated by this method, they
|
||||
* <em>must</em> be updated by the caller</p>
|
||||
*/
|
||||
private void rotateCCW() {
|
||||
|
||||
final T tmpElt = element;
|
||||
element = right.element;
|
||||
right.element = tmpElt;
|
||||
|
||||
final Node tmpNode = right;
|
||||
right = tmpNode.right;
|
||||
tmpNode.right = tmpNode.left;
|
||||
tmpNode.left = left;
|
||||
left = tmpNode;
|
||||
|
||||
if (right != null) {
|
||||
right.parent = this;
|
||||
}
|
||||
if (left.left != null) {
|
||||
left.left.parent = left;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -1,431 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.geometry.partitioning.utilities;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
|
||||
/** This class implements an ordering operation for T-uples.
|
||||
*
|
||||
* <p>Ordering is done by encoding all components of the T-uple into a
|
||||
* single scalar value and using this value as the sorting
|
||||
* key. Encoding is performed using the method invented by Georg
|
||||
* Cantor in 1877 when he proved it was possible to establish a
|
||||
* bijection between a line and a plane. The binary representations of
|
||||
* the components of the T-uple are mixed together to form a single
|
||||
* scalar. This means that the 2<sup>k</sup> bit of component 0 is
|
||||
* followed by the 2<sup>k</sup> bit of component 1, then by the
|
||||
* 2<sup>k</sup> bit of component 2 up to the 2<sup>k</sup> bit of
|
||||
* component {@code t}, which is followed by the 2<sup>k-1</sup>
|
||||
* bit of component 0, followed by the 2<sup>k-1</sup> bit of
|
||||
* component 1 ... The binary representations are extended as needed
|
||||
* to handle numbers with different scales and a suitable
|
||||
* 2<sup>p</sup> offset is added to the components in order to avoid
|
||||
* negative numbers (this offset is adjusted as needed during the
|
||||
* comparison operations).</p>
|
||||
*
|
||||
* <p>The more interesting property of the encoding method for our
|
||||
* purpose is that it allows to select all the points that are in a
|
||||
* given range. This is depicted in dimension 2 by the following
|
||||
* picture:</p>
|
||||
*
|
||||
* <img src="doc-files/OrderedTuple.png" />
|
||||
*
|
||||
* <p>This picture shows a set of 100000 random 2-D pairs having their
|
||||
* first component between -50 and +150 and their second component
|
||||
* between -350 and +50. We wanted to extract all pairs having their
|
||||
* first component between +30 and +70 and their second component
|
||||
* between -120 and -30. We built the lower left point at coordinates
|
||||
* (30, -120) and the upper right point at coordinates (70, -30). All
|
||||
* points smaller than the lower left point are drawn in red and all
|
||||
* points larger than the upper right point are drawn in blue. The
|
||||
* green points are between the two limits. This picture shows that
|
||||
* all the desired points are selected, along with spurious points. In
|
||||
* this case, we get 15790 points, 4420 of which really belonging to
|
||||
* the desired rectangle. It is possible to extract very small
|
||||
* subsets. As an example extracting from the same 100000 points set
|
||||
* the points having their first component between +30 and +31 and
|
||||
* their second component between -91 and -90, we get a subset of 11
|
||||
* points, 2 of which really belonging to the desired rectangle.</p>
|
||||
*
|
||||
* <p>the previous selection technique can be applied in all
|
||||
* dimensions, still using two points to define the interval. The
|
||||
* first point will have all its components set to their lower bounds
|
||||
* while the second point will have all its components set to their
|
||||
* upper bounds.</p>
|
||||
*
|
||||
* <p>T-uples with negative infinite or positive infinite components
|
||||
* are sorted logically.</p>
|
||||
*
|
||||
* <p>Since the specification of the {@code Comparator} interface
|
||||
* allows only {@code ClassCastException} errors, some arbitrary
|
||||
* choices have been made to handle specific cases. The rationale for
|
||||
* these choices is to keep <em>regular</em> and consistent T-uples
|
||||
* together.</p>
|
||||
* <ul>
|
||||
* <li>instances with different dimensions are sorted according to
|
||||
* their dimension regardless of their components values</li>
|
||||
* <li>instances with {@code Double.NaN} components are sorted
|
||||
* after all other ones (even after instances with positive infinite
|
||||
* components</li>
|
||||
* <li>instances with both positive and negative infinite components
|
||||
* are considered as if they had {@code Double.NaN}
|
||||
* components</li>
|
||||
* </ul>
|
||||
*
|
||||
* @since 3.0
|
||||
* @deprecated as of 3.4, this class is not used anymore and considered
|
||||
* to be out of scope of Apache Commons Math
|
||||
*/
|
||||
@Deprecated
|
||||
public class OrderedTuple implements Comparable<OrderedTuple> {
|
||||
|
||||
/** Sign bit mask. */
|
||||
private static final long SIGN_MASK = 0x8000000000000000L;
|
||||
|
||||
/** Exponent bits mask. */
|
||||
private static final long EXPONENT_MASK = 0x7ff0000000000000L;
|
||||
|
||||
/** Mantissa bits mask. */
|
||||
private static final long MANTISSA_MASK = 0x000fffffffffffffL;
|
||||
|
||||
/** Implicit MSB for normalized numbers. */
|
||||
private static final long IMPLICIT_ONE = 0x0010000000000000L;
|
||||
|
||||
/** Double components of the T-uple. */
|
||||
private double[] components;
|
||||
|
||||
/** Offset scale. */
|
||||
private int offset;
|
||||
|
||||
/** Least Significant Bit scale. */
|
||||
private int lsb;
|
||||
|
||||
/** Ordering encoding of the double components. */
|
||||
private long[] encoding;
|
||||
|
||||
/** Positive infinity marker. */
|
||||
private boolean posInf;
|
||||
|
||||
/** Negative infinity marker. */
|
||||
private boolean negInf;
|
||||
|
||||
/** Not A Number marker. */
|
||||
private boolean nan;
|
||||
|
||||
/** Build an ordered T-uple from its components.
|
||||
* @param components double components of the T-uple
|
||||
*/
|
||||
public OrderedTuple(final double ... components) {
|
||||
this.components = components.clone();
|
||||
int msb = Integer.MIN_VALUE;
|
||||
lsb = Integer.MAX_VALUE;
|
||||
posInf = false;
|
||||
negInf = false;
|
||||
nan = false;
|
||||
for (int i = 0; i < components.length; ++i) {
|
||||
if (Double.isInfinite(components[i])) {
|
||||
if (components[i] < 0) {
|
||||
negInf = true;
|
||||
} else {
|
||||
posInf = true;
|
||||
}
|
||||
} else if (Double.isNaN(components[i])) {
|
||||
nan = true;
|
||||
} else {
|
||||
final long b = Double.doubleToLongBits(components[i]);
|
||||
final long m = mantissa(b);
|
||||
if (m != 0) {
|
||||
final int e = exponent(b);
|
||||
msb = FastMath.max(msb, e + computeMSB(m));
|
||||
lsb = FastMath.min(lsb, e + computeLSB(m));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (posInf && negInf) {
|
||||
// instance cannot be sorted logically
|
||||
posInf = false;
|
||||
negInf = false;
|
||||
nan = true;
|
||||
}
|
||||
|
||||
if (lsb <= msb) {
|
||||
// encode the T-upple with the specified offset
|
||||
encode(msb + 16);
|
||||
} else {
|
||||
encoding = new long[] {
|
||||
0x0L
|
||||
};
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Encode the T-uple with a given offset.
|
||||
* @param minOffset minimal scale of the offset to add to all
|
||||
* components (must be greater than the MSBs of all components)
|
||||
*/
|
||||
private void encode(final int minOffset) {
|
||||
|
||||
// choose an offset with some margins
|
||||
offset = minOffset + 31;
|
||||
offset -= offset % 32;
|
||||
|
||||
if ((encoding != null) && (encoding.length == 1) && (encoding[0] == 0x0L)) {
|
||||
// the components are all zeroes
|
||||
return;
|
||||
}
|
||||
|
||||
// allocate an integer array to encode the components (we use only
|
||||
// 63 bits per element because there is no unsigned long in Java)
|
||||
final int neededBits = offset + 1 - lsb;
|
||||
final int neededLongs = (neededBits + 62) / 63;
|
||||
encoding = new long[components.length * neededLongs];
|
||||
|
||||
// mix the bits from all components
|
||||
int eIndex = 0;
|
||||
int shift = 62;
|
||||
long word = 0x0L;
|
||||
for (int k = offset; eIndex < encoding.length; --k) {
|
||||
for (int vIndex = 0; vIndex < components.length; ++vIndex) {
|
||||
if (getBit(vIndex, k) != 0) {
|
||||
word |= 0x1L << shift;
|
||||
}
|
||||
if (shift-- == 0) {
|
||||
encoding[eIndex++] = word;
|
||||
word = 0x0L;
|
||||
shift = 62;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Compares this ordered T-uple with the specified object.
|
||||
|
||||
* <p>The ordering method is detailed in the general description of
|
||||
* the class. Its main property is to be consistent with distance:
|
||||
* geometrically close T-uples stay close to each other when stored
|
||||
* in a sorted collection using this comparison method.</p>
|
||||
|
||||
* <p>T-uples with negative infinite, positive infinite are sorted
|
||||
* logically.</p>
|
||||
|
||||
* <p>Some arbitrary choices have been made to handle specific
|
||||
* cases. The rationale for these choices is to keep
|
||||
* <em>normal</em> and consistent T-uples together.</p>
|
||||
* <ul>
|
||||
* <li>instances with different dimensions are sorted according to
|
||||
* their dimension regardless of their components values</li>
|
||||
* <li>instances with {@code Double.NaN} components are sorted
|
||||
* after all other ones (evan after instances with positive infinite
|
||||
* components</li>
|
||||
* <li>instances with both positive and negative infinite components
|
||||
* are considered as if they had {@code Double.NaN}
|
||||
* components</li>
|
||||
* </ul>
|
||||
|
||||
* @param ot T-uple to compare instance with
|
||||
* @return a negative integer if the instance is less than the
|
||||
* object, zero if they are equal, or a positive integer if the
|
||||
* instance is greater than the object
|
||||
|
||||
*/
|
||||
public int compareTo(final OrderedTuple ot) {
|
||||
if (components.length == ot.components.length) {
|
||||
if (nan) {
|
||||
return +1;
|
||||
} else if (ot.nan) {
|
||||
return -1;
|
||||
} else if (negInf || ot.posInf) {
|
||||
return -1;
|
||||
} else if (posInf || ot.negInf) {
|
||||
return +1;
|
||||
} else {
|
||||
|
||||
if (offset < ot.offset) {
|
||||
encode(ot.offset);
|
||||
} else if (offset > ot.offset) {
|
||||
ot.encode(offset);
|
||||
}
|
||||
|
||||
final int limit = FastMath.min(encoding.length, ot.encoding.length);
|
||||
for (int i = 0; i < limit; ++i) {
|
||||
if (encoding[i] < ot.encoding[i]) {
|
||||
return -1;
|
||||
} else if (encoding[i] > ot.encoding[i]) {
|
||||
return +1;
|
||||
}
|
||||
}
|
||||
|
||||
if (encoding.length < ot.encoding.length) {
|
||||
return -1;
|
||||
} else if (encoding.length > ot.encoding.length) {
|
||||
return +1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return components.length - ot.components.length;
|
||||
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public boolean equals(final Object other) {
|
||||
if (this == other) {
|
||||
return true;
|
||||
} else if (other instanceof OrderedTuple) {
|
||||
return compareTo((OrderedTuple) other) == 0;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public int hashCode() {
|
||||
// the following constants are arbitrary small primes
|
||||
final int multiplier = 37;
|
||||
final int trueHash = 97;
|
||||
final int falseHash = 71;
|
||||
|
||||
// hash fields and combine them
|
||||
// (we rely on the multiplier to have different combined weights
|
||||
// for all int fields and all boolean fields)
|
||||
int hash = Arrays.hashCode(components);
|
||||
hash = hash * multiplier + offset;
|
||||
hash = hash * multiplier + lsb;
|
||||
hash = hash * multiplier + (posInf ? trueHash : falseHash);
|
||||
hash = hash * multiplier + (negInf ? trueHash : falseHash);
|
||||
hash = hash * multiplier + (nan ? trueHash : falseHash);
|
||||
|
||||
return hash;
|
||||
|
||||
}
|
||||
|
||||
/** Get the components array.
|
||||
* @return array containing the T-uple components
|
||||
*/
|
||||
public double[] getComponents() {
|
||||
return components.clone();
|
||||
}
|
||||
|
||||
/** Extract the sign from the bits of a double.
|
||||
* @param bits binary representation of the double
|
||||
* @return sign bit (zero if positive, non zero if negative)
|
||||
*/
|
||||
private static long sign(final long bits) {
|
||||
return bits & SIGN_MASK;
|
||||
}
|
||||
|
||||
/** Extract the exponent from the bits of a double.
|
||||
* @param bits binary representation of the double
|
||||
* @return exponent
|
||||
*/
|
||||
private static int exponent(final long bits) {
|
||||
return ((int) ((bits & EXPONENT_MASK) >> 52)) - 1075;
|
||||
}
|
||||
|
||||
/** Extract the mantissa from the bits of a double.
|
||||
* @param bits binary representation of the double
|
||||
* @return mantissa
|
||||
*/
|
||||
private static long mantissa(final long bits) {
|
||||
return ((bits & EXPONENT_MASK) == 0) ?
|
||||
((bits & MANTISSA_MASK) << 1) : // subnormal number
|
||||
(IMPLICIT_ONE | (bits & MANTISSA_MASK)); // normal number
|
||||
}
|
||||
|
||||
/** Compute the most significant bit of a long.
|
||||
* @param l long from which the most significant bit is requested
|
||||
* @return scale of the most significant bit of {@code l},
|
||||
* or 0 if {@code l} is zero
|
||||
* @see #computeLSB
|
||||
*/
|
||||
private static int computeMSB(final long l) {
|
||||
|
||||
long ll = l;
|
||||
long mask = 0xffffffffL;
|
||||
int scale = 32;
|
||||
int msb = 0;
|
||||
|
||||
while (scale != 0) {
|
||||
if ((ll & mask) != ll) {
|
||||
msb |= scale;
|
||||
ll >>= scale;
|
||||
}
|
||||
scale >>= 1;
|
||||
mask >>= scale;
|
||||
}
|
||||
|
||||
return msb;
|
||||
|
||||
}
|
||||
|
||||
/** Compute the least significant bit of a long.
|
||||
* @param l long from which the least significant bit is requested
|
||||
* @return scale of the least significant bit of {@code l},
|
||||
* or 63 if {@code l} is zero
|
||||
* @see #computeMSB
|
||||
*/
|
||||
private static int computeLSB(final long l) {
|
||||
|
||||
long ll = l;
|
||||
long mask = 0xffffffff00000000L;
|
||||
int scale = 32;
|
||||
int lsb = 0;
|
||||
|
||||
while (scale != 0) {
|
||||
if ((ll & mask) == ll) {
|
||||
lsb |= scale;
|
||||
ll >>= scale;
|
||||
}
|
||||
scale >>= 1;
|
||||
mask >>= scale;
|
||||
}
|
||||
|
||||
return lsb;
|
||||
|
||||
}
|
||||
|
||||
/** Get a bit from the mantissa of a double.
|
||||
* @param i index of the component
|
||||
* @param k scale of the requested bit
|
||||
* @return the specified bit (either 0 or 1), after the offset has
|
||||
* been added to the double
|
||||
*/
|
||||
private int getBit(final int i, final int k) {
|
||||
final long bits = Double.doubleToLongBits(components[i]);
|
||||
final int e = exponent(bits);
|
||||
if ((k < e) || (k > offset)) {
|
||||
return 0;
|
||||
} else if (k == offset) {
|
||||
return (sign(bits) == 0L) ? 1 : 0;
|
||||
} else if (k > (e + 52)) {
|
||||
return (sign(bits) == 0L) ? 0 : 1;
|
||||
} else {
|
||||
final long m = (sign(bits) == 0L) ? mantissa(bits) : -mantissa(bits);
|
||||
return (int) ((m >> (k - e)) & 0x1L);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Binary file not shown.
Before Width: | Height: | Size: 28 KiB |
|
@ -1,24 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
/**
|
||||
*
|
||||
* <p>
|
||||
* This package provides multidimensional ordering features for partitioning.
|
||||
* </p>
|
||||
*
|
||||
*/
|
||||
package org.apache.commons.math4.geometry.partitioning.utilities;
|
|
@ -1,176 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.geometry.partitioning.utilities;
|
||||
|
||||
import org.apache.commons.math4.geometry.partitioning.utilities.AVLTree;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
@Deprecated
|
||||
public class AVLTreeTest {
|
||||
|
||||
@Test
|
||||
public void testInsert() {
|
||||
// this array in this order allows to pass in all branches
|
||||
// of the insertion algorithm
|
||||
int[] array = { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5,
|
||||
11, 18, 19, 17, 4, 7, 1, 3, 6, 10 };
|
||||
AVLTree<Integer> tree = buildTree(array);
|
||||
|
||||
Assert.assertEquals(array.length, tree.size());
|
||||
|
||||
for (int i = 0; i < array.length; ++i) {
|
||||
Assert.assertEquals(array[i], value(tree.getNotSmaller(new Integer(array[i]))));
|
||||
}
|
||||
|
||||
checkOrder(tree);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDelete1() {
|
||||
int[][][] arrays = {
|
||||
{ { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5, 11, 18, 19, 17, 4, 7, 1, 3, 6, 10 },
|
||||
{ 11, 10, 9, 12, 16, 15, 13, 18, 5, 0, 3, 2, 14, 6, 19, 17, 8, 4, 7, 1 } },
|
||||
{ { 16, 13, 15, 14, 2, 0, 12, 9, 8, 5, 11, 18, 19, 17, 4, 7, 1, 3, 6, 10 },
|
||||
{ 0, 17, 14, 15, 16, 18, 6 } },
|
||||
{ { 6, 2, 7, 8, 1, 4, 3, 5 }, { 8 } },
|
||||
{ { 6, 2, 7, 8, 1, 4, 5 }, { 8 } },
|
||||
{ { 3, 7, 2, 1, 5, 8, 4 }, { 1 } },
|
||||
{ { 3, 7, 2, 1, 5, 8, 6 }, { 1 } }
|
||||
};
|
||||
for (int i = 0; i < arrays.length; ++i) {
|
||||
AVLTree<Integer> tree = buildTree(arrays[i][0]);
|
||||
Assert.assertTrue(! tree.delete(new Integer(-2000)));
|
||||
for (int j = 0; j < arrays[i][1].length; ++j) {
|
||||
Assert.assertTrue(tree.delete(tree.getNotSmaller(new Integer(arrays[i][1][j])).getElement()));
|
||||
Assert.assertEquals(arrays[i][0].length - j - 1, tree.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNavigation() {
|
||||
int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
|
||||
AVLTree<Integer> tree = buildTree(array);
|
||||
|
||||
AVLTree<Integer>.Node node = tree.getSmallest();
|
||||
Assert.assertEquals(array[0], value(node));
|
||||
for (int i = 0; i < array.length; ++i) {
|
||||
Assert.assertEquals(array[i], value(node));
|
||||
node = node.getNext();
|
||||
}
|
||||
Assert.assertNull(node);
|
||||
|
||||
node = tree.getLargest();
|
||||
Assert.assertEquals(array[array.length - 1], value(node));
|
||||
for (int i = array.length - 1; i >= 0; --i) {
|
||||
Assert.assertEquals(array[i], value(node));
|
||||
node = node.getPrevious();
|
||||
}
|
||||
Assert.assertNull(node);
|
||||
|
||||
checkOrder(tree);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSearch() {
|
||||
int[] array = { 2, 4, 6, 8, 10, 12, 14 };
|
||||
AVLTree<Integer> tree = buildTree(array);
|
||||
|
||||
Assert.assertNull(tree.getNotLarger(new Integer(array[0] - 1)));
|
||||
Assert.assertNull(tree.getNotSmaller(new Integer(array[array.length - 1] + 1)));
|
||||
|
||||
for (int i = 0; i < array.length; ++i) {
|
||||
Assert.assertEquals(array[i],
|
||||
value(tree.getNotSmaller(new Integer(array[i] - 1))));
|
||||
Assert.assertEquals(array[i],
|
||||
value(tree.getNotLarger(new Integer(array[i] + 1))));
|
||||
}
|
||||
|
||||
checkOrder(tree);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRepetition() {
|
||||
int[] array = { 1, 1, 3, 3, 4, 5, 6, 7, 7, 7, 7, 7 };
|
||||
AVLTree<Integer> tree = buildTree(array);
|
||||
Assert.assertEquals(array.length, tree.size());
|
||||
|
||||
AVLTree<Integer>.Node node = tree.getNotSmaller(new Integer(3));
|
||||
Assert.assertEquals(3, value(node));
|
||||
Assert.assertEquals(1, value(node.getPrevious()));
|
||||
Assert.assertEquals(3, value(node.getNext()));
|
||||
Assert.assertEquals(4, value(node.getNext().getNext()));
|
||||
|
||||
node = tree.getNotLarger(new Integer(2));
|
||||
Assert.assertEquals(1, value(node));
|
||||
Assert.assertEquals(1, value(node.getPrevious()));
|
||||
Assert.assertEquals(3, value(node.getNext()));
|
||||
Assert.assertNull(node.getPrevious().getPrevious());
|
||||
|
||||
AVLTree<Integer>.Node otherNode = tree.getNotSmaller(new Integer(1));
|
||||
Assert.assertTrue(node != otherNode);
|
||||
Assert.assertEquals(1, value(otherNode));
|
||||
Assert.assertNull(otherNode.getPrevious());
|
||||
|
||||
node = tree.getNotLarger(new Integer(10));
|
||||
Assert.assertEquals(7, value(node));
|
||||
Assert.assertNull(node.getNext());
|
||||
node = node.getPrevious();
|
||||
Assert.assertEquals(7, value(node));
|
||||
node = node.getPrevious();
|
||||
Assert.assertEquals(7, value(node));
|
||||
node = node.getPrevious();
|
||||
Assert.assertEquals(7, value(node));
|
||||
node = node.getPrevious();
|
||||
Assert.assertEquals(7, value(node));
|
||||
node = node.getPrevious();
|
||||
Assert.assertEquals(6, value(node));
|
||||
|
||||
checkOrder(tree);
|
||||
|
||||
}
|
||||
|
||||
private AVLTree<Integer> buildTree(int[] array) {
|
||||
AVLTree<Integer> tree = new AVLTree<Integer>();
|
||||
for (int i = 0; i < array.length; ++i) {
|
||||
tree.insert(new Integer(array[i]));
|
||||
tree.insert(null);
|
||||
}
|
||||
return tree;
|
||||
}
|
||||
|
||||
private int value(AVLTree<Integer>.Node node) {
|
||||
return node.getElement().intValue();
|
||||
}
|
||||
|
||||
private void checkOrder(AVLTree<Integer> tree) {
|
||||
AVLTree<Integer>.Node next = null;
|
||||
for (AVLTree<Integer>.Node node = tree.getSmallest();
|
||||
node != null;
|
||||
node = next) {
|
||||
next = node.getNext();
|
||||
if (next != null) {
|
||||
Assert.assertTrue(node.getElement().compareTo(next.getElement()) <= 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue