Added sigmoid and generalized logistic functions.


git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1065146 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2011-01-29 23:38:39 +00:00
parent ec822cf7d4
commit 6fe6e487ff
4 changed files with 247 additions and 0 deletions

View File

@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis.function;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Generalised_logistic_function">
* Generalised logistic</a> function.
*
* @version $Revision$ $Date$
* @since 3.0
*/
public class Logistic implements UnivariateRealFunction {
/** Lower asymptote. */
private final double a;
/** Upper asymptote. */
private final double k;
/** Growth rate. */
private final double b;
/** Parameter that affects near which asymptote maximum growth occurs. */
private final double n;
/** Parameter that affects the position of the curve along the ordinate axis. */
private final double q;
/** Abscissa of maximum growth. */
private final double m;
/**
* @param k Upper asymptote.
* @param m Abscissa of maximum growth.
* @param b Growth rate.
* @param q Parameter that affects the position of the curve along the
* ordinate axis.
* @param a Lower asymptote.
* @param n Parameter that affects near which asymptote the maximum
* growth occurs.
* @throws NotStrictlyPositiveException if {@code n <= 0}.
*/
public Logistic(double k,
double m,
double b,
double q,
double a,
double n) {
if (n <= 0) {
throw new NotStrictlyPositiveException(n);
}
this.k = k;
this.m = m;
this.b = b;
this.q = q;
this.a = a;
this.n = n;
}
/** {@inheritDoc} */
public double value(double x) {
return a + (k - a) / FastMath.pow((1 + q * FastMath.exp(b * (m - x))), 1 / n);
}
}

View File

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis.function;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
* Sigmoid</a> function.
* A more flexible version, the generalised logistic, is implemented
* by the {@link Logistic} class.
*
* @version $Revision$ $Date$
* @since 3.0
*/
public class Sigmoid implements UnivariateRealFunction {
/** {@inheritDoc} */
public double value(double x) {
return 1 / (1 + FastMath.exp(-x));
}
}

View File

@ -0,0 +1,84 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis.function;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test for class {@link Logistic}.
*/
public class LogisticTest {
private final double EPS = Math.ulp(1d);
@Test
public void testPreconditions() {
try {
final UnivariateRealFunction f = new Logistic(1, 0, 1, 1, 0, -1);
} catch (NotStrictlyPositiveException e) {
// Expected.
}
try {
final UnivariateRealFunction f = new Logistic(1, 0, 1, 1, 0, 0);
} catch (NotStrictlyPositiveException e) {
// Expected.
}
}
@Test
public void testCompareSigmoid() {
final UnivariateRealFunction sig = new Sigmoid();
final UnivariateRealFunction sigL = new Logistic(1, 0, 1, 1, 0, 1);
final double min = -2;
final double max = 2;
final int n = 100;
final double delta = (max - min) / n;
for (int i = 0; i < n; i++) {
final double x = min + i * delta;
Assert.assertEquals("x=" + x, sig.value(x), sigL.value(x), EPS);
}
}
@Test
public void testSomeValues() {
final double k = 4;
final double m = 5;
final double b = 2;
final double q = 3;
final double a = -1;
final double n = 2;
final UnivariateRealFunction f = new Logistic(k, m, b, q, a, n);
double x;
x = m;
Assert.assertEquals("x=" + x, a + (k - a) / FastMath.sqrt(1 + q), f.value(x), EPS);
x = Double.NEGATIVE_INFINITY;
Assert.assertEquals("x=" + x, a, f.value(x), EPS);
x = Double.POSITIVE_INFINITY;
Assert.assertEquals("x=" + x, k, f.value(x), EPS);
}
}

View File

@ -0,0 +1,47 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis.function;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test for class {@link Sigmoid}.
*/
public class SigmoidTest {
private final double EPS = Math.ulp(1d);
@Test
public void testSomeValues() {
final UnivariateRealFunction f = new Sigmoid();
double x;
x = 0;
Assert.assertEquals("x=" + x, 0.5, f.value(x), EPS);
x = Double.NEGATIVE_INFINITY;
Assert.assertEquals("x=" + x, 0, f.value(x), EPS);
x = Double.POSITIVE_INFINITY;
Assert.assertEquals("x=" + x, 1, f.value(x), EPS);
}
}