Adapt to API change in "Commons Numbers".
This commit is contained in:
parent
46a0c3ae41
commit
71bfa2daeb
|
@ -114,7 +114,7 @@ public class UnivariatePeriodicInterpolator
|
||||||
y[index] = yval[i];
|
y[index] = yval[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
SortInPlace.ASCENDING.accept(x, y);
|
SortInPlace.ASCENDING.apply(x, y);
|
||||||
|
|
||||||
final UnivariateFunction f = interpolator.interpolate(x, y);
|
final UnivariateFunction f = interpolator.interpolate(x, y);
|
||||||
return new UnivariateFunction() {
|
return new UnivariateFunction() {
|
||||||
|
|
|
@ -78,7 +78,7 @@ public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
|
||||||
coefficientsComputed = false;
|
coefficientsComputed = false;
|
||||||
|
|
||||||
if (!verifyInterpolationArray(x, y, false)) {
|
if (!verifyInterpolationArray(x, y, false)) {
|
||||||
SortInPlace.ASCENDING.accept(this.x, this.y);
|
SortInPlace.ASCENDING.apply(this.x, this.y);
|
||||||
// Second check in case some abscissa is duplicated.
|
// Second check in case some abscissa is duplicated.
|
||||||
verifyInterpolationArray(this.x, this.y, true);
|
verifyInterpolationArray(this.x, this.y, true);
|
||||||
}
|
}
|
||||||
|
@ -183,7 +183,7 @@ public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
|
||||||
System.arraycopy(x, 0, xNew, 0, x.length);
|
System.arraycopy(x, 0, xNew, 0, x.length);
|
||||||
System.arraycopy(y, 0, yNew, 0, y.length);
|
System.arraycopy(y, 0, yNew, 0, y.length);
|
||||||
|
|
||||||
SortInPlace.ASCENDING.accept(xNew, yNew);
|
SortInPlace.ASCENDING.apply(xNew, yNew);
|
||||||
// Second check in case some abscissa is duplicated.
|
// Second check in case some abscissa is duplicated.
|
||||||
verifyInterpolationArray(xNew, yNew, true);
|
verifyInterpolationArray(xNew, yNew, true);
|
||||||
return evaluateInternal(xNew, yNew, z);
|
return evaluateInternal(xNew, yNew, z);
|
||||||
|
|
|
@ -767,7 +767,7 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
|
||||||
new double[] { xval[1], xval[1 + delta] };
|
new double[] { xval[1], xval[1 + delta] };
|
||||||
final double[] yBad =
|
final double[] yBad =
|
||||||
new double[] { yval[1], yval[1 + delta] };
|
new double[] { yval[1], yval[1 + delta] };
|
||||||
SortInPlace.ASCENDING.accept(xBad, yBad);// since d can be +/- 1
|
SortInPlace.ASCENDING.apply(xBad, yBad);// since d can be +/- 1
|
||||||
univariateFunction = linear.interpolate(xBad, yBad);
|
univariateFunction = linear.interpolate(xBad, yBad);
|
||||||
markerHeight = univariateFunction.value(xD);
|
markerHeight = univariateFunction.value(xD);
|
||||||
}
|
}
|
||||||
|
|
|
@ -1150,7 +1150,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
|
||||||
@Override
|
@Override
|
||||||
public double evaluate(final double[] work, final double[] sampleWeights,
|
public double evaluate(final double[] work, final double[] sampleWeights,
|
||||||
final double p) {
|
final double p) {
|
||||||
SortInPlace.ASCENDING.accept(work, sampleWeights);
|
SortInPlace.ASCENDING.apply(work, sampleWeights);
|
||||||
double[] sk = new double[work.length];
|
double[] sk = new double[work.length];
|
||||||
for(int k = 0; k < work.length; k++) {
|
for(int k = 0; k < work.length; k++) {
|
||||||
sk[k] = 0;
|
sk[k] = 0;
|
||||||
|
|
Loading…
Reference in New Issue