Added two-sample (binned comparison) ChiSquare test
JIRA: MATH-160 Thanks to: Matthias Hummel git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@550285 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
9104ab39e9
commit
7323a8a8b1
|
@ -211,4 +211,118 @@ public interface ChiSquareTest {
|
|||
*/
|
||||
boolean chiSquareTest(long[][] counts, double alpha)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
/**
|
||||
* <p>Computes a
|
||||
* <a href="http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/chi2samp.htm">
|
||||
* Chi-Square two sample test statistic</a> comparing bin frequency counts
|
||||
* in <code>observed1</code> and <code>observed2</code>. The
|
||||
* sums of frequency counts in the two samples are not required to be the
|
||||
* same. The formula used to compute the test statistic is</p>
|
||||
* <code>
|
||||
* ∑[(K * observed1[i] - observed2[i]/K)<sup>2</sup> / (observed1[i] + observed2[i])]
|
||||
* </code> where
|
||||
* <br/><code>K = &sqrt;[&sum(observed2 / ∑(observed1)]</code>
|
||||
* </p>
|
||||
* <p>This statistic can be used to perform a Chi-Square test evaluating the null hypothesis that
|
||||
* both observed counts follow the same distribution.
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Observed counts must be non-negative.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific bin must not both be zero.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific sample must not all be 0.
|
||||
* </li>
|
||||
* <li>The arrays <code>observed1</code> and <code>observed2</code> must have the same length and
|
||||
* their common length must be at least 2.
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @return chiSquare statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
*/
|
||||
double chiSquareDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException;
|
||||
|
||||
/**
|
||||
* <p>Returns the <i>observed significance level</i>, or <a href=
|
||||
* "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
|
||||
* p-value</a>, associated with a Chi-Square two sample test comparing
|
||||
* bin frequency counts in <code>observed1</code> and
|
||||
* <code>observed2</code>.
|
||||
* </p>
|
||||
* <p>The number returned is the smallest significance level at which one
|
||||
* can reject the null hypothesis that the observed counts conform to the
|
||||
* same distribution.
|
||||
* </p>
|
||||
* <p>See {@link #chiSquareDataSetsComparison(long[], long[]) for details
|
||||
* on the formula used to compute the test statistic. The degrees of
|
||||
* of freedom used to perform the test is one less than the common length
|
||||
* of the input observed count arrays.
|
||||
* </p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Observed counts must be non-negative.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific bin must not both be zero.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific sample must not all be 0.
|
||||
* </li>
|
||||
* <li>The arrays <code>observed1</code> and <code>observed2</code> must
|
||||
* have the same length and
|
||||
* their common length must be at least 2.
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
/**
|
||||
* <p>Performs a Chi-Square two sample test comparing two binned data
|
||||
* sets. The test evaluates the null hypothesis that the two lists of
|
||||
* observed counts conform to the same frequency distribution, with
|
||||
* significance level <code>alpha</code>. Returns true iff the null
|
||||
* hypothesis can be rejected with 100 * (1 - alpha) percent confidence.
|
||||
* </p>
|
||||
* <p>See {@link #chiSquareDataSetsComparison(double[], double[])} for
|
||||
* details on the forumla used to compute the Chisquare statistic used
|
||||
* in the test. The degrees of of freedom used to perform the test is
|
||||
* one less than the common length of the input observed count arrays.
|
||||
* </p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Observed counts must be non-negative.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific bin must not both be zero.
|
||||
* </li>
|
||||
* <li>Observed counts for a specific sample must not all be 0.
|
||||
* </li>
|
||||
* <li>The arrays <code>observed1</code> and <code>observed2</code> must
|
||||
* have the same length and their common length must be at least 2.
|
||||
* </li>
|
||||
* <li> <code> 0 < alpha < 0.5 </code>
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
}
|
||||
|
|
|
@ -172,6 +172,99 @@ public class ChiSquareTestImpl implements ChiSquareTest {
|
|||
return (chiSquareTest(counts) < alpha);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @return chi-square test statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
*/
|
||||
public double chiSquareDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException {
|
||||
|
||||
// Make sure lengths are same
|
||||
if ((observed1.length < 2) || (observed1.length != observed2.length)) {
|
||||
throw new IllegalArgumentException(
|
||||
"oberved1, observed2 array lengths incorrect");
|
||||
}
|
||||
// Ensure non-negative counts
|
||||
if (!isNonNegative(observed1) || !isNonNegative(observed2)) {
|
||||
throw new IllegalArgumentException(
|
||||
"observed counts must be non-negative");
|
||||
}
|
||||
// Compute and compare count sums
|
||||
long countSum1 = 0;
|
||||
long countSum2 = 0;
|
||||
boolean unequalCounts = false;
|
||||
double weight = 0.0;
|
||||
for (int i = 0; i < observed1.length; i++) {
|
||||
countSum1 += observed1[i];
|
||||
countSum2 += observed2[i];
|
||||
}
|
||||
// Ensure neither sample is uniformly 0
|
||||
if (countSum1 * countSum2 == 0) {
|
||||
throw new IllegalArgumentException(
|
||||
"observed counts cannot all be 0");
|
||||
}
|
||||
// Compare and compute weight only if different
|
||||
unequalCounts = (countSum1 != countSum2);
|
||||
if (unequalCounts) {
|
||||
weight = Math.sqrt((double) countSum1 / (double) countSum2);
|
||||
}
|
||||
// Compute ChiSquare statistic
|
||||
double sumSq = 0.0d;
|
||||
double dev = 0.0d;
|
||||
double obs1 = 0.0d;
|
||||
double obs2 = 0.0d;
|
||||
for (int i = 0; i < observed1.length; i++) {
|
||||
if (observed1[i] == 0 && observed2[i] == 0) {
|
||||
throw new IllegalArgumentException(
|
||||
"observed counts must not both be zero");
|
||||
} else {
|
||||
obs1 = (double) observed1[i];
|
||||
obs2 = (double) observed2[i];
|
||||
if (unequalCounts) { // apply weights
|
||||
dev = obs1/weight - obs2 * weight;
|
||||
} else {
|
||||
dev = obs1 - obs2;
|
||||
}
|
||||
sumSq += (dev * dev) / (obs1 + obs2);
|
||||
}
|
||||
}
|
||||
return sumSq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
public double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException, MathException {
|
||||
distribution.setDegreesOfFreedom((double) observed1.length - 1);
|
||||
return 1 - distribution.cumulativeProbability(
|
||||
chiSquareDataSetsComparison(observed1, observed2));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed1 array of observed frequency counts of the first data set
|
||||
* @param observed2 array of observed frequency counts of the second data set
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
public boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2,
|
||||
double alpha) throws IllegalArgumentException, MathException {
|
||||
if ((alpha <= 0) || (alpha > 0.5)) {
|
||||
throw new IllegalArgumentException(
|
||||
"bad significance level: " + alpha);
|
||||
}
|
||||
return (chiSquareTestDataSetsComparison(observed1, observed2) < alpha);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks to make sure that the input long[][] array is rectangular,
|
||||
* has at least 2 rows and 2 columns, and has all non-negative entries,
|
||||
|
@ -284,7 +377,9 @@ public class ChiSquareTestImpl implements ChiSquareTest {
|
|||
|
||||
/**
|
||||
* Modify the distribution used to compute inference statistics.
|
||||
* @param value the new distribution
|
||||
*
|
||||
* @param value
|
||||
* the new distribution
|
||||
* @since 1.2
|
||||
*/
|
||||
public void setDistribution(ChiSquaredDistribution value) {
|
||||
|
|
|
@ -276,4 +276,31 @@ public class TestUtils {
|
|||
return chiSquareTest. chiSquareTest(counts);
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.inference.ChiSquareTest#chiSquareDataSetsComparison(double[], double[])
|
||||
*/
|
||||
public static double chiSquareDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException {
|
||||
return chiSquareTest.chiSquareDataSetsComparison(observed1, observed2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.inference.ChiSquareTest#chiSquareTestDataSetsComparison(double[], double[])
|
||||
*/
|
||||
public static double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
|
||||
throws IllegalArgumentException, MathException {
|
||||
return chiSquareTest.chiSquareTestDataSetsComparison(observed1, observed2);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.inference.ChiSquareTest#chiSquareTestDataSetsComparison(double[], double[], double)
|
||||
*/
|
||||
public static boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2,
|
||||
double alpha)
|
||||
throws IllegalArgumentException, MathException {
|
||||
return chiSquareTest.chiSquareTestDataSetsComparison(observed1, observed2, alpha);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -193,4 +193,70 @@ public class ChiSquareTestTest extends TestCase {
|
|||
assertEquals("chi-square p-value", 0.0462835770603,
|
||||
testStatistic.chiSquareTest(counts), 1E-9);
|
||||
}
|
||||
|
||||
/** Target values verified using DATAPLOT version 2006.3 */
|
||||
public void testChiSquareDataSetsComparisonEqualCounts()
|
||||
throws Exception {
|
||||
long[] observed1 = {10, 12, 12, 10};
|
||||
long[] observed2 = {5, 15, 14, 10};
|
||||
assertEquals("chi-square p value", 0.541096,
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2), 1E-6);
|
||||
assertEquals("chi-square test statistic", 2.153846,
|
||||
testStatistic.chiSquareDataSetsComparison(
|
||||
observed1, observed2), 1E-6);
|
||||
assertFalse("chi-square test result",
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2, 0.4));
|
||||
}
|
||||
|
||||
/** Target values verified using DATAPLOT version 2006.3 */
|
||||
public void testChiSquareDataSetsComparisonUnEqualCounts()
|
||||
throws Exception {
|
||||
long[] observed1 = {10, 12, 12, 10, 15};
|
||||
long[] observed2 = {15, 10, 10, 15, 5};
|
||||
assertEquals("chi-square p value", 0.124115,
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2), 1E-6);
|
||||
assertEquals("chi-square test statistic", 7.232189,
|
||||
testStatistic.chiSquareDataSetsComparison(
|
||||
observed1, observed2), 1E-6);
|
||||
assertTrue("chi-square test result",
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2, 0.13));
|
||||
assertFalse("chi-square test result",
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2, 0.12));
|
||||
}
|
||||
|
||||
public void testChiSquareDataSetsComparisonBadCounts()
|
||||
throws Exception {
|
||||
long[] observed1 = {10, -1, 12, 10, 15};
|
||||
long[] observed2 = {15, 10, 10, 15, 5};
|
||||
try {
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed1, observed2);
|
||||
fail("Expecting IllegalArgumentException - negative count");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
long[] observed3 = {10, 0, 12, 10, 15};
|
||||
long[] observed4 = {15, 0, 10, 15, 5};
|
||||
try {
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed3, observed4);
|
||||
fail("Expecting IllegalArgumentException - double 0's");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
long[] observed5 = {10, 10, 12, 10, 15};
|
||||
long[] observed6 = {0, 0, 0, 0, 0};
|
||||
try {
|
||||
testStatistic.chiSquareTestDataSetsComparison(
|
||||
observed5, observed6);
|
||||
fail("Expecting IllegalArgumentException - vanishing counts");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -84,6 +84,9 @@ Commons Math Release Notes</title>
|
|||
<action dev="psteitz" type="update" issue="MATH-158" due-to "Hasan Diwan">
|
||||
Added log function to MathUtils.
|
||||
</action>
|
||||
<action dev="psteitz" type="update" issue="MATH-160" due-to "Matthias Hummel">
|
||||
Added two sample (binned comparison) ChiSquare test.
|
||||
</action>
|
||||
</release>
|
||||
<release version="1.1" date="2005-12-17"
|
||||
description="This is a maintenance release containing bug fixes and enhancements.
|
||||
|
|
Loading…
Reference in New Issue